•  

    Meteorology


    Subject: Meteorology

    Grade:11-12
    Timeline:
    18 weeks
    Semester Title:  Earth’s Weather and Climate


     

    Earth's Weather and Climate Overview: 

    Students in the Meteorology course continue to develop knowledge in the core disciplinary idea in the Earth and Space Sciences described in the Next Generation Science Standards (NGSS) including: Earth and Human Activity and Earth’s Systems.  In Earth and Human Activity, students analyze weather models and make an evidence-based forecast of current rate of climate change. In Earth’s Systems, students study the factors that change weather and climate.


     

    Objectives: The objectives of this semester are to apply the Next Generation Science Standards (NGSS) Crosscutting Concepts that bridge disciplinary boundaries, uniting core ideas through out the fields of science and engineering.

     

    1. Patterns.  Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.
     
    2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.
     
    3. Scale, proportion, and quantity. In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.
     
    4. Systems and system models. Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.
     
    5. Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.
     
    6. Structure and function. The way in which an object or living thing is shaped and its substructures determine many of its properties and functions.
     
    7. Stability and change. For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.
     


    Focus Standards:

     

    3.3.12.A1:
    • Explain how parts are related to other parts in weather systems, solar systems, and earth systems, including how the output from one part can become an input to another part.
     
    3.3.12.A7:
    • Interpret and analyze a combination of ground-based observations, satellite data, and computer models to demonstrate Earth systems and their interconnections.
    • Infer how human activities may impact the natural course of Earth’s cycles.
    • Summarize the use of data in understanding seismic events, meteorology, and geologic time.
     
    3.3.12.A8:
     
    ·        Examine the status of existing theories.
    ·        Evaluate experimental information for relevance and adherence to science processes.
    • Interpret results of experimental research to predict new information, propose additional investigable questions, or advance a solution.
    • Judge that conclusions are consistent and logical with experimental conditions.
    • Communicate and defend a scientific argument.

    NGSS Disciplinary Core Ideas:
     

     

     ESS2.D: Weather and Climate

    ESS2.D:Weather and Climate

    ESS3.C: Human Impacts on Earth Systems

    ESS3.D: Global Climate Change


     

    Concepts - Students will know:

    ·        the composition, structure and properties that make up Earth's atmosphere.

    ·        the factors that affect weather patterns over the Earth’s surface.

    ·        the factors that affect climate.

     

     

    Competencies-Students will be able to:

    ·        describe the formation of Earth’s early atmosphere and key gases 

    ·        identify three methods of transferring energy through the atmosphere

    ·        describe the various properties of the atmosphere including temperature, air pressure and density

    ·        describe cloud formation and the different types of cloud groups

    ·        relate the Coriolis Effect to weather patterns.

    ·        explain how warm, cold, stationary and occluded fronts affect weather patterns.

    ·        analyze weather data to predict weather patterns.

    ·        describe and interpret weather maps and reports.

    ·        describe different types of climate data.

    ·        explain why climates vary.                                                                        

    ·        describe the criteria used to classify climates. 

    ·        distinguish among different types of climatic changes and why they occur.

    ·        identify how humans impact the global climate                              

    ·        compare and contrast natural and human impact on climate change


     

    Assessments: 
     
    Formative, Performance Tasks with rubric, Summative, grade calculation

     

    Elements of Instruction:

     

    Analyzing and Interpreting Data
     

    Analyzing Data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.  Analyze data using computational models in order to make valid and reliable scientific claims.

     
    Using Mathematics and Computational Thinking
     
    Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.  Create a computational model or simulation of a phenomenon, designed device, progress, or system.  Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.
     
    Constructing Explanations and Designing Solutions
     
    Constructing explanations and designing solutions in 9-12 builds on K-8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific knowledge, principles, and theories.  Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Design or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources evidence, prioritized criteria, and tradeoff considerations.
     
    Engaging in Argument from Evidence
     
    Engaging in argument from Evidence in 9-12 build on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed world(s). Arguments may also come from current scientific or historical episodes in science. Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors 9e.g. economic, societal, environmental, ethical considerations).

     

    Connections to Nature of Science

     
    Scientific investigations Use a Variety of Methods
     
    Science investigations use diverse methods and do not always use the same set of procedures to obtain data.  New technologies advance scientific knowledge.
     
    Scientific Knowledge is Based on Empirical Evidence
     
    Scientific knowledge is based on empirical evidence.  Science arguments are strengthened by multiple lines of evidence supporting a single explanation.
     

    Developing and Using Models-Modeling in 9-12 builds on K-8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their  components in the natural and designed world(s).

     

    Using Mathematical and Computational Thinking-Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

     

    Constructing Explanations and Designing Solutions-Constructing explanations and designing solutions in 9-12 and builds on K-8experiences and progresses to explanations and designs are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

     

    Engaging in Argument from Evidence-Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific and historical episodes in science.

     

    Obtaining, Evaluating, and Communicating Information-Obtaining, evaluating, and communicating in 9-12 builds on K-8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.

     

    Planning and Carrying Out Investigations-Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

     

    Analyzing and Interpreting Data-Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency and the use of models to generate and analyze data.

     


     

    Differentiation:

    Each lesson has differentiation options for each portion of the lesson. Additional differentiation options are listed with directions and student masters in the Teacher’s Guide.

    Remediation could include: using word walls, using flip charts or foldables, structured notebooks, peer teaching, teaming with the math department for graphing.

    Extensions could include: independent research, inquiry based experiments, exploration of topics online.

     


     

    Interdisciplinary Connections:

    The topics covered in Meteorology relate to many chemistry and physics topics.

     

    Writing in the Sciences is connected to Literacy Common Core Shifts.  Students could use note-booking or journaling, reading informational text and answering text-dependent questions, writing laboratory experiment plans and lab reports, academic and content specific vocabulary. 

    Problem Solving in the Sciences is connected with Mathematics Common Core Shifts in the following topics:  reasoning abstractly and quantitatively, modeling, scale, formulas, measurement, graphing data, and calculations.

     


     

    Additional Resources / Games:

     Pennsylvania Department of Education - www.education.state.pa.us

     Standards Aligned System - http://www.pdesas.org/

    www.nasa.gov

    www.nsta.org

    www.science.glencoe.com