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Introduction

In this year’s Mathematics Resource Guide, we will study three connected areas of mathematics: permutations 
and combinations, algebra, and statistics. The idea that connections exist between these areas of mathematics 
may seem strange to you now, but connections and relationships between seemingly disconnected topics such 
as these are at the heart of mathematics. It is our hope that after reading through this Mathematics Resource 
Guide, you will be aware of and interested in these connections among different areas of mathematics.

The first section of the resource guide will cover permutations and combinations—topics that are sometimes 
discussed in a general high school math sequence, but perhaps are only given a cursory treatment that often 
leaves students without a good sense of their power, flexibility, and array of applications. Combinations in 
particular are extremely important and are used in a wide variety of mathematical contexts, and so a comfort 
level with these mathematical structures will pay dividends in your future study of mathematics.

Section 2 will focus on the topic of algebra. Algebra is a term that has seemingly become synonymous with 
high school mathematics, and yet the algebra most students learn in high school mathematics courses is only 
a small fraction of the field of algebra. Our purpose in this section is to highlight some important algebraic 
ideas and patterns that are often overlooked in a standard study of high school algebra. Being comfortable 
with arithmetic and geometric sequences and series is at least as important as knowing how to factor a 
quadratic, but most students spend comparatively little time looking at these sequences and series. Sigma 
notation for series becomes increasingly important in the study of calculus and mathematics beyond calculus, 
so this resource guide aims to provide you with plenty of opportunities to practice reading and manipulating 
sigma notation. The Binomial Expansion Theorem is another foundational topic often left out or deempha-
sized in traditional high school mathematics, and we will use our previous work with combinations to make 
sense of this important theorem. Finally, Euler’s constant, e, is often used but rarely properly understood, 
and so we will look at e both from a contextual and a mathematical perspective.

Statistics is a branch of mathematics often only briefly covered in high school mathematics and misunder-
stood by much of the general public. In the final section of the Mathematics Resource Guide, we will take a 
more mathematical look at some of the foundations of statistics, and discuss the reasons different statisti-
cal measures, such as mean, median, variance, and standard deviation, were developed. The foundational 
concepts of probability distributions, the Binomial Distribution, and the Normal Distribution will also be 
investigated.

We hope you find this year’s Mathematics Resource Guide interesting and insightful as we look at connections 
between these seemingly disparate areas of mathematics. Enjoy!
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Section 1

Overview of Permutations and Combinations

In many high school mathematics sequences, permutations and combinations are often left out all 
together. When discussed, they are not usually given sufficient time for students to develop an ap-
preciation and mastery of these topics. This is certainly not the fault of high school mathematics 

teachers—there is simply too much good content to discuss and not enough time! Yet permutations and 
combinations are extremely important concepts that underpin a great deal of higher mathematics. Indeed, 
one of the fields of current mathematical study and research is called combinatorics.

Studying permutations and combinations also has great benefits for high school students. Initially these 
topics are fairly accessible, and some of the early problems can be approached quickly and solved easily. 
Yet, despite their humble beginnings, they eventually become powerful tools for solving a wide array of 
problems, and this flexibility makes them very useful. The study of permutations and combinations en-
courages and requires visualization, algebraic fluency, and an attention to accurate calculations—all posi-
tive mathematical traits.

In last year’s Mathematics Resource Guide, some time was spent discussing permutations and combinations 
and relating them to probability. As we will use permutations and combinations again in this year’s Math-
ematics Resource Guide, we will begin with a refresher on these concepts. If you are able, you can review 
the portions of last year’s Mathematics Resource Guide on these topics. If not, have no fear! Everything you 
will need to know and understand about permutations and combinations will be discussed in this year’s 
resource guide.

We will begin with a familiar idea from elementary school mathematics: multiplication. Multiplication 
is most often useful in situations of repeated addition: rather than add up 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 
3, which could become long and tedious, we instead use multiplication and write 3 · 9 = 27. Many times 
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ExamplE 1.1a: Toni is having a birthday party next week and wants to give everyone six 

pieces of candy in their gift bag. If Toni is inviting 15 people to the birthday party, how 

many pieces of candy does Toni need?

Solution: One way to solve this problem is to add up six 15 times: 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 

+ 6 + 6 + 6 + 6 + 6 + 6. This makes sense because each of the 15 guests gets six pieces of candy.

Although we might expect a first- or second-grader to solve the problem using addition, we are

slightly more mathematically sophisticated, and say 15 · 6 = 90.

ExamplE 1.1b: Toni goes to the store to purchase the candy. Unfortunately, the only candy 

the store has is little packages of candies with 7 pieces of candy in each package. Toni de-

cides to give each guest six packages of this candy. How many pieces of candy does Toni 

purchase in order to fill the gift bags?

Solution: Toni was planning on getting 90 pieces of candy, since 15 · 6 = 90. But now each of the 

90 packages contains 7 pieces of candy, so Toni will purchase 15 · 6 · 7 = 630 pieces of candy.

(hah!) multiplication is introduced as repeated addition, and if asked, many people will give “repeated 
addition” as a definition, or the definition, of multiplication. (It turns out some mathematicians may dis-
agree with this definition, but that is another story.) Multiplication is in some ways the first important 
mathematical notation encountered, as it represents an operation that is a shortening of a (potentially) long 
process of calculation. Let’s start with some straightforward examples.
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Although this a nice series of problems, and it certainly represents a good use of multiplication, it doesn’t 

seem that this solution strategy generalizes easily. Each guest has six packages of candy, and each package 

of candy has seven pieces, and each piece takes two bites to eat. How often do situations like this really 

arise?

Let’s take a step back for a moment and imagine what we would do to solve this problem if we didn’t 

understand multiplication very well, or hadn’t learned multiplication yet. One option would be to make a 

list of all bites needed to eat the candy. We could make up names for each of the fifteen guests, assign the 

packages of candy numbers, number off the pieces of candy, and start writing:

Amy, Package 1, Candy 1, Bite 1

Amy, Package 1, Candy 1, Bite 2

Amy, Package 1, Candy 2, Bite 1

Amy, Package 1, Candy 2, Bite 2

As you can imagine, this would take quite a while. After we get through all of Amy’s seven candies in 

Package 1, we would move to Package 2, and only after we write out all of Amy’s six packages could we 

even start on Bob’s candies.

While writing out the entire list (with 1,260 entries!) would clearly be awful, thinking about the giant 

list is helpful. We can see there are 15 different possibilities for the person, 6 different possibilities for the 

package, 7 different possibilities for the candy, and 2 different possibilities for the bite. This mathematical 

structure—keeping track of the different possibilities for each entry in a list—is more applicable and can 

be applied to a variety of contexts.

ExamplE 1.1c: Once at the party, everyone decides they need to open their gift bag imme-

diately after receiving it, rather than wait until they get home. It turns out the individual 

pieces of candy inside the packages were a bit larger than Toni thought, and they need to 

be eaten in two bites each. Assuming every guest does this uniformly, how many bites will 

it take for all fifteen guests to eat all of the candy?

Solution: Each of the 630 pieces of candy will take two bites to eat, so there will be a total of 

15 · 6 · 7 · 2 = 1,260 bites before all the candy is eaten.
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Keeping these examples in mind, it seems we are ready to generalize.

In terms of the candy for Toni’s party, there were four items on the list: the person, the package, the piece 

of candy, and the bite. Since there were 15, 6, 7, and 2 choices, respectively, for each of these items, the 

answer was 15 · 6 · 7 · 2. 

Let’s look at one more example before we make this any more complicated. Be sure to think through why 

the multiplication principle makes sense; memorizing and imitating formulas doesn’t help when those 

formulas need to be modified to apply them to new situations.

When listing out all the possibilities for k items, the total number of entries in this list is given 

by n1 ∙ n2 ∙ n3 . . . nk , where nk is the number of possibilities for the kth item. For example, n3 is the 

number of possibilities for the third item.

ExamplE 1.1d: Many license plates have three letters A–Z followed by three numbers 0–9. 

Assuming there are no restrictions on the letters or numbers used, how many different 

license plates are possible?

Solution: Again, we clearly don’t want to write out the entire list of possibilities, but imagining 

those possibilities is a good place to start. Our list would begin with the license plate AAA 000, 

followed by AAA 001, and AAA 002. Eventually we would get to AAA 999, followed by AAB 000 (ex-

citing!). Only after a brutally long time would we ever get to start a license plate with B, let alone 

get all the way down to the end of the list at ZZZ 999. So how many license plates are possible?  

With 26 choices for each of the letters and 10 choices for each of the numbers, there will be 26 · 26 

· 26 · 10 · 10 · 10 = 17,576,000 different possible license plates. (Good thing we didn’t try to write

them all out!)
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The problems we have considered thus far are nice because each category is distinct, and there is no real 
possibility for confusion about which category contains a given object. Usually, we would not think ched-
dar cheese, turkey, ham, mustard would be a legitimate sandwich in the example above. When categories 
potentially overlap, or when we are repeatedly picking objects from the same category, we need to be more 
careful.

Let’s consider an example. At the beginning of math class every day, Mr. Smith selects students to write 
up homework problems on the board. These problems are then discussed as a class. There are 26 students 
in Mr. Smith’s math class, and he randomly selects a student to write up each of the first five problems. 
How many different ways can students be assigned to the problems?

This problem is more complicated than the sandwich or candy problems because we are selecting objects 
from the same group each time. Mr. Smith is not selecting students from five different classes or from 
different groups within his class. In this way, the problem is more like the license plate problem. In that 
problem, we were selecting repeatedly from two different groups. Here we are repeatedly selecting objects 
from only one group, the class of 26 students.

ExamplE 1.1E: Every morning, Jesse makes a sandwich to take to school for lunch. Jesse likes 

sandwiches with bread, cheese, lunchmeat, and a dressing. At the local grocery store, there 

are three choices for bread (white, wheat, and whole grain), four choices for cheese (ched-

dar, Colby jack, mozzarella, and Swiss), seven choices for lunchmeat (turkey, smoked turkey, 

ham, honey ham, roast beef, salami, and pastrami), and three choices for dressing (mayon-

naise, mustard, and spicy mustard). How many different sandwiches can Jesse make?

Solution: The Multiplication Principle says the answer is 3 · 4 · 7 · 3 = 252, but let’s make sure we 

understand why this is the case. If our sandwich consisted of only bread, there would be three dif-

ferent sandwiches possible. Including cheese, each type of bread can be paired with four different 

cheeses, making a total of 12 possible sandwiches. Each of these 12 bread-cheese sandwiches can 

have one of seven lunchmeats added, bringing us to 84 sandwiches. And each of these 84 bread-

cheese-lunchmeat sandwiches can have one of three dressings, for a total of 252 possible sand-

wiches.
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ExamplE 1.2b: How many ways can three different cards be drawn without replacement 

from a standard 52-card deck, assuming the order of drawing cards matters?

Solution: Since the cards are drawn without replacement, each card is kept when the next card is 

drawn. This means there are 52 choices for the first card, but only 51 choices for the second card, 

and 50 choices for the third card. Therefore, there are 52 · 51 · 50 = 132,600 different ways three 

different cards can be drawn without replacement.

There are two important things to consider from this pair of problems. The first is the difference in the 
answers. Although there are more ways to draw three cards with replacement than without, this difference 
is perhaps not as large as expected. Because there are so many cards to choose from, and we are selecting 
so few of them, most of the entries in our imaginary list of all 140,608 ways to write out three cards with 
replacement will contain three different cards. Therefore, the vast majority of these entries will be included 

ExamplE 1.2a: How many ways can three different cards be drawn with replacement from a 

standard 52-card deck?

Solution: Since the cards are drawn with replacement, each card is put back into the deck before 

the next card is drawn. So, the same card could be drawn all three times, and there are 52 choices 

for the first card, 52 choices for the second card, and 52 choices for the third card. Therefore, there 

are 52 · 52 · 52 = 140,608 different ways three cards can be drawn with replacement.

The first thing we have to determine is if any student can be selected more than once. In our imaginary list 
of all possible arrangements, is Fred, Fred, Fred, Fred, Fred an allowable selection? Or if Fred is selected to 
write up the first problem, is he “safe” from writing up problems #2 – 5?

This is an important distinction and can drastically impact the answer to the question. Fortunately, this 
does not significantly alter the way we think about the problem, just the answer we get. Hopefully whether 
or not objects can be repeated is clear from the context and description of the problem. Sometimes, the 
phrases “with replacement” or “without replacement” are used to clarify whether or not an object from 
a category can be selected more than once. This example will be presented for you to solve in the review 
problems at the end of this section. Let’s now work through a few examples here.
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ExamplE 1.2d: How many different ways can 52 cards be drawn from a deck without replace-

ment (where the order of the cards matters)?

Solution: Notice that eventually every card in the deck will be drawn. This means that when it is 

time to draw the last card, there is only one option, since every other card has already been drawn. 

So, there are 52 choices for the first card, but then 51 choices for the second card, and 50 choices for 

the third card, and so on down to only 1 choice for the last card. Therefore, the calculation we need  

to perform is 52 · 51 · 50 · 49 . . .  3 · 2 · 1. Even though this number is much smaller than 5252 and has 

“only” 68 digits, we still don’t want to write out this number. Furthermore, writing out this 68-digit 

number would not convey anything about where this number came from and would not give any 

insight into the problem. It seems we need some new notation, kind of like exponent notation but 

instead of multiplying by the same number each time, we decrease the number we are multiplying 

by each time, as in 52 · 51 · 50 · 49 . . . 3 · 2 · 1. 

ExamplE 1.2c: How many different ways can 52 cards be drawn from a deck with replace-

ment (assuming the order of selection matters)?

Solution: Since there are 52 choices for the first card, and 52 choices for the second card, and the 

third card, etc., we could write 52 · 52 · 52 . . . 52, with fifty-two 52’s in this list. Rather than write out 

the numerical value of this calculation (which contains 90 digits), we use mathematical notation to 

say the answer is 5252. Not only is this a nice way to write the answer, it also gives us some insight 

into the problem, as we can see the answer is fifty-two 52’s all multiplied together.

in our imaginary list of all 132,600 ways to select three different cards. It seems as we select more and more 
cards from the deck, this difference should become greater.

The second idea that should be considered carefully is that when drawing is done without replacement, 
the order in which the cards are drawn makes a difference. Maybe the cards are being drawn and then 
placed face-up to create some form of “lineup,” but most of the time when cards are drawn from a deck, 
the order in which they are dealt doesn’t matter. How can this potentially more realistic situation be dealt 
with (hah!)? We will return to this line of questioning in a moment. For now, let’s consider the difference 
between selecting with replacement and without replacement (assuming order matters).
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ExamplE 1.2c: How many different ways can 52 cards be drawn from a deck with replace-

ment (assuming the order of selection matters)?

Solution: Since there are 52 choices for the first card, and 52 choices for the second card, and the 

third card, etc., we could write 52 · 52 · 52 . . . 52, with fifty-two 52’s in this list. Rather than write out 

the numerical value of this calculation (which contains 90 digits), we use mathematical notation to 

say the answer is 5252. Not only is this a nice way to write the answer, it also gives us some insight 

into the problem, as we can see the answer is fifty-two 52’s all multiplied together.

in our imaginary list of all 132,600 ways to select three different cards. It seems as we select more and more 
cards from the deck, this difference should become greater.

The second idea that should be considered carefully is that when drawing is done without replacement, 
the order in which the cards are drawn makes a difference. Maybe the cards are being drawn and then 
placed face-up to create some form of “lineup,” but most of the time when cards are drawn from a deck, 
the order in which they are dealt doesn’t matter. How can this potentially more realistic situation be dealt 
with (hah!)? We will return to this line of questioning in a moment. For now, let’s consider the difference 
between selecting with replacement and without replacement (assuming order matters).
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So, rather than answering the question in ExamplE 1.2d as 52 · 51 · 50 · 49 . . . 3 · 2 · 1, we can say the 
answer is 52!. In addition to making the answer easier to write, this notation also helps give some insight 
into the solution to the problem: take all the whole numbers starting from 52 down to 1 and multiply them 
together.

We can see now that the difference between selecting with replacement and without replacement be-
comes larger as we select more and more objects. Although 5252 and 52! are both very large numbers, 
       ≈ 4.72579 × 10−22 , which means the monstrous list of all 52! arrangements when repetition is not al-
lowed takes up a miniscule 0.0000000000000000000472% of the ridiculously larger gigantic list of all 
5252 arrangements if repetition is allowed.

For our purposes, we will consider factorial notation as defined for positive whole numbers only. (It turns 
out, however, that mathematicians have discovered/invented a function that allows them to perform 
strange factorial calculations, like     !. Weird, no?) Also, we will define 0! = 1 for reasons that may be clear 
shortly.

Factorial notation is certainly helpful if we are selecting every member of a group, like all 52 cards in a 
deck. But, what if we are not selecting every object from the group? Can we still use factorial notation to 
help write the answer?

52!
5252

1
2

The symbol “!”, read aloud as “factorial,” means the product of all whole numbers starting from 

the number indicated down to 1. For example, 3!, read aloud as “three factorial,” means 3 · 2 · 1, 

so 3! = 6.
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ExamplE 1.2E: A computer program generates access codes consisting of five letters A–Z, 

but each letter can be used only once per access code. How many different codes are pos-

sible?

Solution: There are 26 choices for the first letter, but then only 25 choices for the second letter, 

and 24 for the third, 23 for the fourth, and 22 for the fifth. Certainly we can write 26 · 25 · 24 · 

23 · 22, but this isn’t particularly satisfying and would get worse if the codes contained more 

letters (say, for example, 20—Bleh!). The numerical value of the answer (7,893,600) doesn’t 

give us any insight into the problem. How can we use factorial notation to write this number? 

26! would mean 26 · 25 · 24 ··· 3 · 2 · 1, but we don’t want all of these numbers multiplied to-

gether; we just want them down to 26 · 25 · 24 · 23 ˙ 22. All of the numbers from 21 down to 1 

need to be canceled out. To cancel out a multiplication, we use division. Therefore, we write 

26 25 24 23 22 = =          .26 · 25 · 24 · 23 · 22 · 21 · 20…3 · 2 · 1
21 · 20…3 · 2 · 1

26!
21!

Not only does this use of factorial notation make the answer easier to write, it also gives us some insight 
into the answer: 26 objects are in our group, and we want to select five of them without replacement (and 
the order of selection matters), so 21 objects are being left out.

Does this idea extend to other problems?

ExamplE 1.2f: 15-character tracking numbers are generated using letters A–Z and numbers 

1–9 (0 is omitted to avoid confusion with the letter O). If each character can only be used 

once per tracking number, how many different tracking numbers are possible?

Solution: One option is to write out 35 · 34 · 33 · 32 · · · . But, what is the last number we would need, 

anyway? If 15 characters are being used, that means 20 are being left out, which means there will 

be 21 choices for the last character. So our answer is 35 · 34 · 33 ··· 23 · 22 · 21. Is there a better way to 

write this? More efficiently, we say the answer is          .35!
20!

This type of problem and solution structure occurs frequently enough that mathematicians have given it a 
name: permutations.
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A permutation is an arrangement of objects from a group where no object can be used more than 
once and the order of selection matters.

The total number of permutations of k objects from a group containing n objects is given by the 
formula           .

n!
(n ‒ k)!

This formula should make good sense if we abstractly consider a problem like the tracking number prob-
lem. Given n objects, if all of the objects are arranged, this can happen in n! ways. If k of the objects are 
being arranged, then the first k numbers in the list n, n – 1, n – 2, etc., need to be multiplied together. This 
leaves n – k numbers at the end of the list to be canceled out (since k + n – k = n), ending with 1. Therefore, 
(n – k)! needs to be canceled out of n!, and hence            .n!

(n ‒ k)!

n ∙ (n – 1) ∙ (n – 2) ∙ ∙ ∙ (n – k + 2) ∙ (n – k + 1) ∙ (n – k) ∙ (n – k – 1) ∙ ∙ ∙ 3 ∙ 2 ∙ 1


n – k termsk terms

ExamplE 1.2g: An art director for a museum is selecting paintings to be displayed along a 

stretch of hallway. There is space for 5 paintings to be displayed, and the art director has 

12 different paintings from which to choose. How many different ways can the art director 

display 5 paintings down the hallway?

Solution: This is an example of permutations since no painting can be chosen more than once and 

because the order of selection matters. (Being the first painting down the hallway is different from 

being the third painting down the hallway.) Therefore, there are          = 95,040 different displays 

possible.

12!
7!
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But what if we are selecting objects and the order of selection doesn’t matter; for example, what if we are 
being dealt three cards out of a standard deck. Typically when we play card games, the order in which we 
are dealt cards doesn’t matter, only which cards are in our hand after the deal. Another classic example is 
selecting people to be members of a committee: the order of the people selected (usually) doesn’t matter, 
just who has been selected at the end. How can we count arrangements in these types of situations? 

ExamplE 1.3a: Three cards are dealt from a standard deck of 52 cards without replacement. 

How many different sets of three cards are possible? (The order in which the cards are dealt 

does not matter.) A standard deck of cards is divided into four suits (hearts, diamonds, 

spades, and clubs) each of which contains 13 cards (numbers 2 through 10, jack, queen, 

king, and ace).

Solution: We already know there are     = 132,600 different arrangements of three cards if 

the order does matter, and we have been imagining the list of all these possible arrange-

ments. Let’s consider an entry in this list, like 2♣, 3♠, 4♦. Since we created this list of arrange-

ments with the understanding that order mattered, these same three cards will appear in 

other entries in the list, just in different orders. How many entries will this be? Since we have 

three different cards, it should be 3 · 2 · 1 = 6 different times. Listing them out confirms this: 

2♣, 3♠, 4♦; 2♣, 4♦, 3♠; 3♠, 2♣, 4♦; 3♠, 4♦, 2♣; 4♦, 2♣, 3♠; 4♦, 3♠, 2♣ 

So, this particular set of three cards was counted six times when order mattered, but should now 

only be counted one time since order doesn’t matter. The tricky part of this argument is convincing 

ourselves that this is true for every set of three cards. There should be nothing special about 2♣, 3♠, 

4♦, and we could repeat the same listing of six arrangements for any set of three cards. (Convince 

yourself this is true.) The list of all 132,600 arrangements when order matters has therefore over-

counted by a factor of 6 when order doesn’t matter, so our final answer is 132,600 / 6 = 22,100 dif-

ferent possible sets of three cards.

52!
49!
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The key idea for solving this problem was that the list of all possible arrangements when order matters 
(permutations) over-counted the list of all possible arrangements when order doesn’t matter (we don’t have 
a name for this yet). In this case, the over-counting factor was 6, because we were selecting three objects, 
and those three objects could be arranged in 3 · 2 · 1 = 6 ways. But wait! 3 · 2 · 1 = 3!, so we could have 
written this entire calculation as          .

This seems like a nice formula, and each portion of the calculation seems to make sense: we have 52 ob-
jects, we are selecting 3 of them and leaving out 49 of them, and the order of selection doesn’t matter, so 
we need to take care of the over-counting factor. Will this strategy and formula always work on these types 
of problems?

52!
49!3!

ExamplE 1.3b: A committee of four teachers needs to be selected from the 16 math teachers 

in a school to select a new Algebra 1 textbook. How many different committees are pos-

sible?

Solution: This is a mathematically similar situation to being dealt cards from a deck because no ob-

ject (or in this case, person) can be selected more than once, and the order of selection doesn’t mat-

ter. If our nice formula from the previous example is going to work here, we hope the calculation is 

      . Let’s carefully think through this problem and see if our formula turns out to be correct. 

If the order of selection mattered (maybe the order of selection determines the role the person 

will have within the committee, like chair or recorder), then this problem would be a permuta-

tion, and we would have     = 43,680 different committees. But, the order of selection doesn’t 

matter, so our list of 43,680 permutations is too long. By what factor have we over-counted? 

Let’s consider one item in our list of 43,680 possible permutations: Mr. Hanks, Ms. Roberts, Mr. Jones, 

Ms. Wright. How many different times does this group of four teachers appear in the list of all pos-

sible permutations? Since there are four different teachers, and they will appear in every possible 

order, these four teachers will appear in the list of all permutations 4 · 3 · 2 · 1 = 24 times. (If you are 

unsure of this, write them out!) Furthermore, any set of four teachers will appear in the list of all per-

mutations 24 times, so the over-counting factor is 24. Therefore, the calculation to determine the 

number of possible committees of four teachers is            , as predicted, and there are 1,820 different 

possible committees.

16!
12!4!

16!
12!

16!
12!4!
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Based on the discussion of these examples, it seems we are ready to name this type of problem and general-
ize the calculation.

A combination is an arrangement of objects from a group where no object can be used more than 
once and the order of selection does not matter.

The total number of combinations of k objects from a group containing n objects is given by the 
formula              .

n!
(n ‒ k)!k!

Mathematicians use the notation        , read aloud as “n choose k”, for the number of possible com-

binations when k objects are selected from n objects.

Example: There are       (read aloud as “16 choose 4”) ways to select a committee of four from a 

group of 16 people.       =        , so there are 1,820 different possible committees.

n
k











16
4











16
4











16!
12!4!

The similarity of the combinations formula to the permutations formula should not be surprising, as we 
used the permutations formula as the starting point to build the combinations formula. The important 
difference between a permutation and a combination is that in a combination, order does not matter. In a 
permutation, order does matter. This means that the list of all possible permutations over-counts the list of 
all possible combinations since different arrangements of objects are considered distinct in a permutation, 
but are all counted the same in a combination. Hopefully, the discussion of the two previous examples has 
given some informal justification to the fact that the over-counting factor is k!. Formally, if we consider a 
set of k objects, there are k! different ways to arrange these objects without repetition. Therefore, the set of 
all permutations will over-count the number of all combinations by exactly k!.
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Although knowing and understanding the formulas for permutations and combinations is very important, 

computing permutations and combinations by hand is not strictly necessary and indeed should be avoided 

in certain situations. (For example,         should not be calculated by hand.) Almost all calculators have 

shortcuts or commands for combinations and permutations, and you should learn how to use these com-

mands efficiently.

Combinations are an extremely useful and flexible mathematical concept with a wide array of applications. 

Throughout the remainder of this Mathematics Resource Guide, we will use combinations in a variety of 

ways. In particular, we will focus on the use of combinations in algebra and probability. In order to give 

readers some idea of the utility of combinations at this time, we will conclude this section with an example 

using combinations in a non-routine way.

100
50











ExamplE 1.3c: Toni has decided that giving each of the 15 guests exactly the same number 

of packages of candy is a bit boring and wants to mix it up a bit. Toni would like everyone 

to get at least two packages of candy, but the remaining packages of candy will be distrib-

uted randomly into the gift bags, so that each guest will probably end up with a different 

number of packages of candy. How many different ways can Toni distribute the 90 pack-

ages of candy?

Solution: This problem seems to be a long way from combinations. Toni could distribute the 

candy in a seemingly endless number of ways. For example, one person could get 62 packages 

of candy, and everyone else could get 2. Two people could get 32 packages of candy, and every-

one else could get 2. As long as the total number of packages adds up to 90, and there are fifteen 

bags, this is a possible arrangement. 

90 packages of candy and 15 bags is quite a bit of candy to distribute. Let’s try the problem with 

smaller numbers and see what happens. 

 

What if Toni only has 10 packages of candy and 5 guests? Let’s say each person will receive at least 

one package of candy. This means there are only 5 packages of candy that can “float” from bag to 

bag. Let’s write out a few possibilities for these 5 packages being separated into the five different 

gift bags.
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1, 1, 1, 1, 1

0, 2, 0, 1, 2

4, 1, 0, 0, 0

0, 0, 1, 3, 1

Although there are clearly fewer arrangements for this problem than with our original problem, the 

connection to combinations—or a quick way to determine the number of possibilities—still seems 

unclear.

Let’s say Toni has the five different gift bags in a row and has the five packages of candy that are 

allowed to “float” in hand. Toni will put some number of packages in the first gift bag (possibly 0), 

move to the second gift bag, put some number of packages in the second gift bag (again, possibly 

0), and so on down the line. If p represents placing a package of candy in the gift bag, and n repre-

sents moving to the next gift bag, then each distribution of the 5 packages can be represented by a 

string of 5 p’s and 4 n’s. For example:

1, 1, 1, 1, 1 can be represented by pnpnpnpnp

0, 2, 0, 1, 2 can be represented by nppnnpnpp

4, 1, 0, 0, 0 can be represented by ppppnpnnn

0, 0, 1, 3, 1 can be represented by nnpnpppnp

Since there is a one-to-one correspondence between the arrangements of p’s and n’s and the distri-

butions of the packages of candy, there is the same number of arrangements as distributions. With 

9 spots to be filled, five of them need to be selected for p. (The remaining spots will automatically

be filled by n’s.) No spot can be picked more than once, and the order of selection doesn’t matter.

Ah ha! A combination!

There are therefore        = 126 different arrangements of 5 p’s and 4 n’s, and this means there are 126

ways to fill 5 different gift bags with 10 packages of candy, assuming each bag must have at least 

one package.

Can this thought process be extended to our original problem? With 15 gift bags, if each gift bag 

must have at least two packages of candy, 60 packages of candy are allowed to “float” from bag to











9

5
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bag. If we imagine the 15 gift bags in a row, Toni will put some number of packages of candy in the 

first gift bag (possibly 0), move to the second gift bag, put some number of packages of candy in 

the second bag (possibly 0), move to the third bag, and so on. At the end of the process, Toni will 

have placed 60 packages of candy and moved to the next gift bag 14 times.

We can then imagine a tremendously long string of p’s and n’s representing each possible place-

ment of the candy as Toni moves from bag to bag. Each string will contain 74 total characters: 60 p’s

and 14 n’s. Therefore, we must select 60 of the 74 places for the p’s, and these places are selected

without replacement, and the order of selection does not matter. Again we have a combination!

Therefore, there are       = 87,178,291,200 different ways Toni can distribute the 90 packages of 

candy to the 15 gift bags, assuming each gift bag contains at least two packages of candy. Whew! 

It is a good thing we didn’t try to list them all out!











74

60

This example illustrates the common “lineup” representation and use of combinations to count the total 
number of possible arrangements in said lineup. As we will see in other sections of this resource guide, 
combinations are a useful mathematical tool with a wide array of applications. At this point, we hope 
you have some sense of when a combination might be useful and knowledge of how to properly calculate 
combinations.

L    The Multiplication Principle: When listing out all the possibilities for k items, the total number of 
entries in this list is given by n1 ∙ n2 ∙ n3 ∙ ∙ ∙ nk , where nk is the number of possibilities for the kth item. 
(For example, n3 is the number of possibilities for the third item.)

L    Factorial Notation: The symbol “!”, read aloud as “factorial,” means the product of all whole numbers 
starting from the number indicated down to 1. For our purposes, factorial is only defined for positive 
whole numbers and 0. By definition, 0! = 1.

L    A permutation is an arrangement of objects from a group where no object can be used more than 
once, and the order of selection matters.
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L    Permutations Formula: The total number of permutations of k objects from a group containing n 
objects is given by the formula            . 

L    A combination is an arrangement of objects from a group where no object can be used more than 
once, and the order of selection does not matter.

L    Combinations Formula: The total number of combinations of k objects from a group containing n 
objects is given by the formula               .

L    Combinations Notation: Mathematicians use the notation     , read aloud as “n choose k,” for the 
number of possible combinations when k objects are selected from n objects. Therefore,      =             .

For each of the problems below, identify whether the problem should be solved using the Multiplication 
Principle, permutations, combinations, or some mixture of these three methods. Explain your reasoning, 
and then solve the problem.

1.  At the beginning of math class every day, Mr. Smith selects students to write up homework
problems on the board. These problems can be discussed as a class. There are 26 students in Mr.
Smith’s math class, and he randomly selects with replacement a student to write up each of the
first five problems. How many different ways can students be assigned to the problems?

2.  Mr. Smith’s students eventually complain that it isn’t fair that a student can be selected more
than once and can be selected to write up all five problems. Mr. Smith agrees that he will now
select   the five students each day without replacement. How many different ways can students be
assigned to the problems?

n
k











n
k











n!
(n ‒ k)!k!

n!
(n ‒ k)!

n!
(n ‒ k)!k!
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3.  Mr. Smith’s students now comment that a student may be selected for a problem they are not able
to do correctly and propose an alternate selection method: a group of five students is selected at
random, and then these five students decide amongst themselves who will write up each problem.
Mr. Smith eventually agrees. How many different ways can Mr. Smith select a group of five stu-
dents?

4.  A regular polygon is a polygon with equal angle measures and equal side lengths. A diagonal of a
polygon connects two non-adjacent vertices. How many diagonals are there in a regular hepta-
decagon (17-sided polygon)?

5.  In a computer game for children, a picture of scenery (like a mountainside) is divided into 8 re-
gions. There are 6 different choices of color, and any region can be painted any color. How many
different ways is it possible to color a given picture?

6.  Ernest is traveling to New York City and has created a list of ten different possible sightseeing
activities in which he is interested. He will be in New York City for three days, but will only have
time for two different activities each day. How many different sightseeing plans can Ernest create?
(Assume each day is treated separately, and clearly Ernest will not want to complete each activity
more than once.)

7.  The programming director of a local television station is setting the schedule for the upcoming
Saturday. On Saturdays, this station shows a series of five movies taking up the morning and af-
ternoon programming hours. If the programming director has 45 movies from which to choose,
how many different movie schedules are possible for this Saturday?

8. What is the coefficient of x9 in (x + 1)13 ?
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Section 2

Unlike permutations and combinations, algebra is a topic that usually receives a great deal of 
discussion in a typical high school mathematics sequence. As with all branches of mathematics, 
however, many ideas remain beyond what most students encounter during their high school 

years. In this section of the resource guide, we hope to broaden the scope of traditional high school algebra 
and show how some of the different mathematical ideas in and around algebra are related to each other. 
We assume the reader has some familiarity and fluency with topics traditionally covered in high school 
algebra courses, such as solving linear equations, basic factoring, solving quadratics, and the quadratic 
formula. Rather than rehash topics such as these, which are typically discussed in traditional high school 
math classes, we will focus on some topics that may not receive as much attention but are still critically 
important in higher mathematics: sequences and series, polynomials, the Binomial Expansion Theorem, 
compound interest, and Euler’s constant.

Mathematics, in part, is the study of patterns and attempts to recognize, extend, and classify these pat-
terns. They may occur geometrically, graphically, or algebraically, but many of the patterns in which math-
ematicians are interested are numerical ones. From an early stage in our mathematical studies, we are 
familiar with lists of numbers and attempts to extend these lists.

ExamplE 2.1a: What are the next three numbers in the following list: 2, 4, 6, 8 …

Solution: As this seems to be a list of even numbers, the next three numbers are 10, 12, 14. 

Mathematicians call a list of numbers like this a sequence.
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A sequence is a list of objects presented in a particular order. The objects in the sequence are called 
the terms of the sequence.

Most sequences are made up of numbers, as in ExamplE 2.1a, and most sequences we will encounter in this 
resource guide will be numerical sequences, but strictly speaking, the terms of a sequence do not need to 
be numbers. Mathematicians often study sequences of different sorts of objects. 

Consider, for example, what object comes next in the following sequence:

Or, for another example, what object comes next in the following sequence: Monday, Tuesday, Wednesday, 
Thursday…?

All of the sequences we will consider are “nice” in that the sequence can be extended in a logical manner. 
Mathematicians do consider lists that do not have a pattern or formula to be sequences (a sequence of ran-
dom numbers, for example), but we will restrict ourselves to nice sequences that we can extend logically 
and predict.

Even within the realm of numerical sequences that can be extended, there are problems assuming that se-
quences are what they first appear to be. Any numerical sequence can, in theory, be extended in an infinite 
number of different ways that may or may not agree with the perceived rule or pattern for the sequence. For 
example, we said earlier that 2, 4, 6, 8, … appears to be a list of even numbers, and so extended it with 10, 
12, and 14. However, this sequence does not have to be a list of even numbers, and there are many different 
ways to extend this sequence. The sequence 2, 4, 6, 8, 10, 58, 252, 734… is a valid mathematical sequence, 
although it is very different from how we expect a sequence beginning with 2, 4, 6, 8 to continue. In this 
resource guide, if a sequence seems to follow a simple pattern, we will generally assume it continues this 
pattern, but strictly speaking this is not necessarily the case.
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In order to communicate effectively about sequences, mathematicians have developed some common nota-
tion.

The position of a term in a sequence is called the index of the term. The terms of a sequence are 
denoted by a variable (usually a or x) and an index, with the index written as a subscript. Unless 
otherwise noted, the index begins at 1 and consists of counting numbers.

For example, a generic sequence will commonly be written as x1, x2, x3… or a1, a2, a3... For the 
sequence of even numbers given earlier, x1 = 2, x2 = 4, x3 = 6, x4 = 8, etc.

Often when we write a sequence in this form, it becomes apparent that there is a relationship between the 
index and the term of the sequence. In the sequence of even numbers, the term is always twice the index.

Mathematicians will use another variable, usually i or k, to represent the index, and xi or xk will be used 
to represent the ith or kth term in the sequence. When this is done, a formula can be written to describe 
the relationship between the index and the term. We will use curly brackets {} to denote that an equation 
represents a sequence of terms, rather than an equation we might try to solve.

For example, the sequence of even numbers can be written as {xi = 2i}.

The curly brackets tell us we are talking about a sequence, and the index of this sequence is represented by 
i. With no other indication about what values i takes, we assume i begins at 1 and counts upward. When
i = 1, x1 = 2 ∙ 1, so x1 = 2. When i = 2, x2 = 2 ∙ 2, so x2 = 4. When i = 3, x3 = 2 ∙ 3, so x3 = 6. This pattern
continues, so this sequence is the sequence of even numbers.

ExamplE 2.1b: What sequence is generated by {xi = i2}?

Solution: When it is not clear what a sequence is, writing out several terms is always a good place 

to start. When i = 1, x1 = 12, so x1 = 1. When i = 2, x2 = 22, so x2 = 4. When i = 3, x3 = 32, so x3 = 9. When 

i = 4, x4 = 42 , so x4 = 16. The first four terms of the sequence are 1, 4, 9, 16, and the fifth term will be 

25 (verify!), so this is the sequence of square numbers.
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ExamplE 2.1c: What formula will generate the sequence 3, 7, 11, 15, 19, …?

Solution: For this sequence, x1 = 3, x2 = 7, x3 = 11, and x4 = 15. It seems the index is multiplied 

by 4 and then one is subtracted to give the term. So, the formula that generates this sequence is  

{xi = 4i − 1}.

Although all of the sequences we have considered so far go on forever, or are infinite, many sequences in 
which we are interested do not go on forever, or are finite. A finite sequence only has a certain number of 
terms, so the index will have a starting value and ending value. We denote these limits on the index by 
using a superscript and subscript after the second curly bracket. The lower number represents the starting 
value for the index (sometimes accompanied by “i = ”), and the upper number represents the ending value 
for the index.

ExamplE 2.1d: Write out the terms of the finite sequence {xi = √i }9

i=1.

Solution: Simplifying the square roots as we go, this sequence is 1, √2, √3, 2, √5, √6, √7, √8, 3.

Some sequences have no particular pattern, or clear relationship of one term to the next, and a generating 
formula must be “guessed” or intuited somehow. Two particular types of sequences, however, have nice 
relationships from one term to the next, and therefore have nice generating formulas. These types of se-
quences occur frequently and have nice mathematical characteristics, which suggests they merit their own 
terminology and careful study.

Sequences are particularly nice if there is a relationship that is easy to identify between one term and the 
next. Let’s take a look at an example: What is the apparent relationship between the terms in the sequence 
3, 7, 11, 15, 19…? As mentioned previously, just because a sequence appears to have a pattern or relation 
ship does not necessarily mean that pattern holds in the sequence. If we assume this sequence behaves as 
it seems to, the relationship is easy to identify: to get from one term to the next, we add 4.
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We have been discussing formulas that generate the terms of a sequence, like {xi = 4i −1} or {xi = i2}. But 
there is another way to represent a sequence as a formula, and that is to describe how the sequence changes 
from one term to the next. In this case, the sequence is adding 4 to go from one term to the next. Math-
ematically, we write xi = xi−1 + 4. Since xi represents the term in the ith place in the sequence, xi−1 represents 
the term in the (i – 1)th place in the sequence, or the previous term.

This formula alone, xi = xi−1 + 4, is not enough to describe the sequence since it only describes how to get 
from one term to the next. This relationship could describe any of a whole group of different sequences 
that add 4 each time, but begin at different values. Therefore, to properly describe a sequence, this type of 
formula also needs a declaration of the starting value. In the example above, we would declare x1 = 3. This 
type of formula for a sequence is called a recursive formula.

A recursive formula for a sequence is a formula that declares the starting value (or values) for the 
sequence and how the subsequent terms are made from the previous term (or terms).

ExamplE 2.1E: Write a recursive formula for the sequence 3, 7, 11, 15, 19… .

Solution: The recursive formula is x1 = 3; xi = xi−1 + 4.

ExamplE 2.1f: Write a recursive formula for the sequence 3, 6, 12, 24, 48 … .

Solution: The first term of this sequence is also 3; therefore, x1 = 3. What is happening as we move 

from term to term in this sequence? It appears as though each term is twice the previous term, so  

xi = 2 ∙ xi−1. Therefore, the recursive formula is x1 = 3; xi = 2 ∙ xi−1 .
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Recursive formulas are sometimes easier to write than formulas that generate a sequence directly, like  
{xi = 4i −1}. These types of formulas are called direct formulas. However, to find the 100th term of a 
sequence using a recursive formula requires writing out the first 99 terms of this sequence, a potentially 
tedious task. To find the 100th term of a sequence using a direct formula, we substitute i = 100 into the 
formula. The advent of computing technology has somewhat lessened this drawback of recursive formulas, 
as computers can now compute thousands of terms using a recursive formula fairly quickly. Indeed, a great 
deal of computer programming uses recursive formulas, and some sequences are much easier to write using 
recursive formulas than direct formulas.

ExamplE 2.1g: What are the terms of the sequence given by the following recursive formula: 

a1 = 1, a2 = 1; ai = ai−1 + ai−2 ?

Solution: Since they were declared, the first two terms of the sequence are a1 = 1 and a2 = 1. What  

do we make of the recursive declaration in this formula? We already know a1 and a2, so letting i =
3 should allow us to find a3. By substitution, a3 = a3−1 + a3−2, so a3 = a2 + a1. Therefore, a3= 2. When  

i = 4, a4 = a3 + a2, so a4 = 3. When i = 5, a5 = a4 + a3, so a5= 5. Thus far our sequence is 1, 1, 2, 3, 5, and

we are able to understand what the recursive rule is doing: each term is found by adding the two 

previous terms together. Writing out more terms of the sequence gives us 1, 1, 2, 3, 5, 8, 13, 21, 34, 

… . This famous sequence is called the Fibonacci sequence. Although somewhat strange at first, 

the recursive formula for the Fibonacci sequence is fairly straightforward; the direct formula, on the 

other hand, is difficult to determine and extremely complicated!

Let’s return to less complicated sequences. A sequence where a fixed amount is added to move from one 
term to the next (like 3, 7, 11, 15, 19, …) is called an arithmetic sequence.

An arithmetic sequence is a sequence with a constant difference between consecutive terms.

Although we generally think of this constant difference as a positive number, this is not strictly neces-
sary, and sequences with a constant negative difference are also arithmetic. Sequences with a common 
difference of 0 are also technically considered arithmetic although these sequences aren’t very interesting.  
(Why not?)
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ExamplE 2.1h: What is the constant difference between the terms of the arithmetic sequence 

13, 6, –1, –8, …?

Solution: The constant difference is –7.

The constant difference for an arithmetic sequence is usually represented by the variable d. The first 
term of an arithmetic sequence is usually represented by the variable a.

This notation allows us to develop recursive and direct formulas for arithmetic sequences. We began this 
discussion with recursive formulas precisely because the recursive formula for an arithmetic sequence is so 
nice. The first term is a, so x1 = a. To move from one term to the next, we add d, so xi = xi−1 + d.

The recursive formula for an arithmetic sequence with an initial value of a and a constant difference 
of d is x1 = a; xi = xi−1 + d.

Using the recursive formula to write out the terms of the generic arithmetic sequence gives us a, a + d, a + 
2d, a + 3d, a + 4d, … . A direct formula relies on the relationship between the index and the term, so we 
consider x1 = a, x2 = a + d, x3 = a + 2d, x4 = a + 3d, and x5 = a + 4d. It seems each term is a plus d times one 
less than the index. This makes sense if we think about what happens as we move along in the sequence. 
To move from the first term to the fifth term, we will add the difference, d, four times to the starting value, 
a. Therefore, the fifth term will be a + 4d. Generalizing this argument, to move from the first term to the
kth term, we will add the difference, d, k – 1 times to the starting value, a. Therefore, the kth term will be
a + (k − 1) ∙ d.
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The direct formula for an arithmetic sequence with an initial value of a and a constant difference

of d is xk = a + (k − 1) ∙ d.

It makes sense that the direct formula for an arithmetic sequence would involve a multiplication by the 
constant difference, as this difference is added repeatedly to move from term to term, and repeated addi-
tion can be expressed as multiplication.

example 2.1i: What is the 201st term in the arithmetic sequence 41, 38, 35, 32, …?

Solution: The first term of the sequence is 41, and the common difference is –3. To move from the 1st 

term to the 201st term in the sequence, the common difference will be added 200 times, so a total of 

600 will be subtracted from 41. Therefore, the 201st term is –559. Note that using the direct formula 

is precisely the same logic, just written more formally: x201 = 41 + (201−1) ∙ (−3), so x201 = −559.

example 2.1j: What is the first term of the arithmetic sequence with x54 = 136 and x77 = 205?

Solution: The first thing we need to do is to determine the constant difference. From the 54th  term  to  

the 77th term, the difference is added 23 times, and the distance between x54 = 136 and x77 = 205 is 69.  

Therefore, the constant difference is 3. From the first term to the 54th term, the difference was added 

53 times. This means the sequence increased 159 from the first term to the 54th term. Therefore, the 

first term is –23.

The thought process in this example is a bit of an informal argument. We can use the direct formula 

several times in a more mathematically formal way to solve the same problem. 

Substituting known values into xk = a + (k − 1) ∙ d gives us two equations: 136 = a + 53 ∙ d (when  

k = 54) and 205 = a + 76 ∙ d (when k = 77). This is then a system of two equations with two  

unknowns that can be solved using substitution or elimination. For example, subtracting the two
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equations gives us 69 = 23d, which implies d = 3. Substituting into the first equation then yields 136 

= a + 53(3), which solves as a = –23.

The other (mathematically) simple thing to do as we move from one term to the next in a sequence is 
multiply, as in the sequence 3, 6, 12, 24, 48, … given in ExamplE 2.1f. These types of sequences are called 
geometric sequences.

A geometric sequence is a sequence with a constant ratio between consecutive terms.

Although we usually consider multiplication and division as separate operations, we know that division 
problems can be stated as multiplication problems and vice versa. Therefore, geometric sequences are al-
ways phrased as a multiplication from term to term, although sometimes this ratio is a fraction between 
0 and 1.

ExamplE 2.1k: What is the ratio for the geometric sequence 36, 12, 4,      , …?

Solution: To move from term to term in this sequence, we divide by 3, so the ratio is      .

4
3

1
3

Ratios for geometric sequences may also be negative numbers or 1. (What would these sequences look  
like?). The only number that is not allowed as a ratio for a geometric sequence is 0. (Why?)

The constant ratio for a geometric sequence is usually represented by the variable r. The first term 
for a geometric sequence is usually represented by the variable a.
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As with arithmetic sequences, this notation allows for the development of recursive and direct formulas for 
geometric sequences. Since the first term of a geometric sequence is a, x1 = a. Since a geometric sequence 
multiplies by the ratio from term to term, xi = r ∙ xi−1.

The recursive formula for a geometric sequence with an initial value of a and a ratio of r is x1 = a ;  
xi = r ∙ xi−1.

We can use this recursive formula to write out several terms and find a direct formula. The terms of the 
generic geometric sequence are a, a · r, a · r2, a · r3, a · r4… . A direct formula finds a relationship between 
the index and the term, so we consider x1 = a, x2 = a ∙ r, x3 = a ∙ r2, x4 = a ∙ r3, and x5 = a ∙ r4. It seems that 
each term is a times r raised to a power that is one less than the index. Therefore, the kth term will be a 
times r raised to the k – 1 power, and xk = a ∙ rk−1.

The direct formula for a geometric sequence with an initial value of a and a ratio of r is xk = a ∙ rk−1.

It makes sense that this formula contains a power of r, as a geometric sequence involves repeated multi-
plication by r to move from one term to the next. Since repeated multiplication can be represented as an 
exponent, we anticipate the direct formula would have a power of r. This power should be k – 1, since we 
need one power of r for every term except for the first term.

example 2.1l: What is the 20th term in the geometric sequence       ,       ,     ,     …?1
20

1
10

1
5

2
5

solution: As the first term is        and the ratio is 2, the 20th term is given by x20 =      ∙ 220−1, so the

20th term is               .131072
5

1
20

1
20
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ExamplE 2.1m: What is the 4th term in a geometric sequence if the 2nd term is 2 and the 6th 

term is 8?

Solution: Since a geometric sequence multiplies by a constant ratio to move from term to term, this 

multiplication occurs 4 times to move from the 2nd term to the 6th term. This means that r4 = 4 , since 

the 2nd term times 4 is the 6th term. So, r2 = 2 and r = √2 . We will multiply by the constant ratio twice 

to move from the 2nd term to the 4th term, so the 2nd term will be multiplied by r2 = 2, and therefore 

the 4th term in this sequence is 4. (The first six terms of the sequence are √2, 2, 2√2, 4, 4√2, 8.)

This is again a bit of an informal argument, and it can be made more formal by using the direct formula 
for a geometric sequence. As x2 = 2, 2 = a ∙ r, and as x6 = 8, 8 = a ∙ r5. Dividing these two equations gives us  
r4 = 4, and so r = √2. We are looking for x4 , which is a ∙ r3. Rather than solving for a, we use 2 = a ∙ r to 
build a ∙ r3 by multiplying both sides by r2. This gives us 2 ∙ r2 = a ∙ r3. As r = √2 , r2 = 2, so 4 = a ∙ r3, and 
x4 = 4.

Arithmetic and geometric sequences are mathematically important due to their simplicity and ease of use. 
They also behave nicely when summing the terms of a sequence, which we will investigate shortly. Arith-
metic and geometric sequences are important in modeling physical phenomena and in other applications. 
Although most models are neither precisely arithmetic (linear) nor geometric (exponential), many growth 
or decay situations can be modeled extremely well using these simple equations. Some of the models 
encountered in typical high school mathematics are perhaps a bit simplistic, but these models are ex-
tremely powerful and far reaching. For example, the idea of the recursive step for the geometric sequence,  
xi = r ∙ xi−1, forms a large part of the study of differential equations in higher mathematics.

In addition to being mathematically simple and having nice recursive and direct formulas, arithmetic and 
geometric sequences have another important mathematical property: it is possible to find a nice formula 
for the sum of an arithmetic (or geometric) sequence. This sum is called a series.

A series is the sum of the terms in a sequence.
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Although it is always possible to find a finite series by brute computational force (determining all the terms 
in the sequence and then summing), this is not a very mathematical way to proceed, and mathematicians 
try to avoid doing such things whenever possible. The fact that there is a nice way to find the sum of arith-
metic and geometric series further highlights their mathematical importance. We will begin by looking at 
an extremely simple, but very important, arithmetic series.

ExamplE 2.1n: What is 1 + 2 + 3 + … + 97 + 98 + 99 + 100?

Solution: The first thing we notice is that this series, like most we will study, is finite; that is, it has a 

certain number of terms (in this case, 100). Many sequences we consider are infinite (go on forever), 

but most infinite series diverge, or add up to infinity. For example, any infinite arithmetic series adds 

up to infinity (like 3 + 7 + 11 + 15 + …) or negative infinity (like 41 + 38 + 35 + 32 + …). However, 

here we have a finite number of terms, so these 100 numbers certainly add up to some number.  

We would like a clever way to add up all 100 of these numbers, rather than just 1 + 2 = 3, 3 + 3 = 6, 6 

+ 4 = 10, etc. This method is rather boring, and with 99 calculations to perform, we are likely to make

a mistake. Rather than adding 1 + 2, why not add 1 + 100? 2 can then be paired with 99, 3 with 98,

and so on. All of these pairs have the same sum, 101, and there are precisely 50 pairs (since there are

100 numbers and we are pairing them up). Therefore, this sum is equal to 101 · 50 = 5,050.

Mathematical legend says the great mathematician Carl Gauss (1777–1855) was in his second-grade class 
when the teacher gave this problem in the hopes of having thirty minutes of peace and quiet as all his 
pupils painstakingly carried out all ninety-nine sums. Gauss thought about the problem for a bit and 
then wrote down nothing but the correct answer, having paired the numbers and multiplied in his head. 
Whether or not this is true, it exemplifies the idea of work smarter, not harder.

Will this pairing idea work on any arithmetic series? If so, it seems we have discovered a powerful tool for 
finding arithmetic series.
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ExamplE 2.1o: Find the arithmetic series 3 + 7 + 11 + 15 + … + 399 + 403 + 407.

Solution: The pairing idea certainly starts off nicely: 3 + 407 = 410, 7 + 403 = 410, 11 + 399 = 410, and 

so on. But how many pairs of 410 are created by the terms in this series? We need to determine how 

many terms are in the sequence 3, 7, 11, 15 … 399, 403, 407. The sequence has a common difference 

of 4, and a total of 404 is added from the first term to get to the last term. This means 4 is added 101 

times to get from the first term to the last term, which means there are 102 terms in the sequence 

(as 4 was not added to get the first term, 3). Therefore there are 51 pairs of 410 in this series, and the 

series totals to 410 · 51 = 20,910.

ExamplE 2.1p: Determine the sum 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64.

Solution: Although we could just add up all these terms, we are interested in whether or not the 

pairing strategy works for non-arithmetic series, so the numerical answer here is not the point of 

the problem. This series is certainly non-arithmetic, since the difference in the first two terms is 3, 

but the difference between the 2nd and 3rd term is 5, and then 7, etc. Will the pairing strategy work? 

1 + 64 = 65, but 4 + 49 = 53. Uh oh. 9 + 36 = 45, and 16 + 25 = 41. None of these pairs have the  

same sum, so our pairing strategy will not work on this series.

Does this series have to be arithmetic for this idea to work? Does this work on other types of series?

Why does the pairing strategy work on arithmetic series? Since the difference between consecutive terms 

is always a constant, d, the pair sum increases by d as the index increases by one (we move one term up the 

sequence). Meanwhile, the pair sum decreases by d as the index decreases by one (we move one term down 

in the sequence). Therefore, the paired sum remains constant throughout, and our pairing strategy works.
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Can we write a formula that describes this pairing strategy for arithmetic series? If we have an even num-
ber of terms, the formula should work out nicely. With an even number of terms, we know each term in 
our series has a pair, and it is easy to determine the number of paired sums. Therefore, we will state our 
formula at first only for arithmetic series with an even number of terms.

To find an arithmetic series with an even number of terms, we create paired sums equal to the first 
term plus the last term. If there are k terms, there will be     pairs, so the arithmetic series will be  
(x1 + xk) ∙     . 

As x1 = a and xk = a + (k −1) ∙ d, this formula can also be written as [2a + (k −1) ∙ d] ∙      , although 
this lacks some of the mathematical aesthetic of the first formula, as it involves the same number 
of variables and masks the idea that generated the formula.

k
2

k
2

k
2

What if the arithmetic series has an odd number of terms? In such cases, our pairing strategy will work 
for the most part, but one term in the series will be left out and not have a pair. How can we deal with this 
problem? It seems there are three main ways to deal with this problem. One idea is to add an extra term 
to the series (giving it an even number of terms) and then subtract the additional term off to return to the 
original series. Another idea is to add up all of the terms except for the last term, so that we have an even 
number of terms, and then add on the term we left off. The last way is to pair up the terms as usual and 
then try to figure out the middle term that is left over and has no pair. We encourage you to try the second 
and third strategy; we will focus on the first.

Let’s try our idea with a specific arithmetic sequence to see how it works before we try it in general.

example 2.1q: What is the arithmetic series 41 + 38 + 35 + … + (–1) + (–4) + (–7)?

Solution: The constant difference for this series is –3, and there are 17 terms. (Is this correct? How 

do we know this?) Although our pairing strategy will work, it would be much nicer if there was an
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an additional term in this series, so there would be 18 terms and 9 pairs. Therefore, we will add 

–10 to the end of the series, find the sum, and then add 10 to remove this extra term we included.

41 + 38 + 35 + … + (–1) + (–4) + (–7) + (–10) has a paired sum of 31, and there will be 9 of these pairs,

so the series is 31 · 9 = 279. But this includes the –10 we added, so our original arithmetic series is

289.

What if we hadn’t worried about whether this series had an even or odd number of terms, and just used 
(x1 + xk) ∙     ? 41 + (–7) = 34? There would be 8.5 “pairs” since 17/2 = 8.5. And 34 · (8.5) = 289! Amazing! 
The formula we wrote for an even number of terms seems to work for an odd number of terms as well! Is 
this just coincidence? Let’s try our strategy of including an extra term in general and see what happens.

k
2

ExamplE 2.1r: What is the arithmetic series with an odd number of terms?

Solution: Since we’re doing this problem in general, we’ll start with x1 = a, x2 = a + d, and so on up 

to xk = a + (k −1) ∙ d, where k is odd. Adding one additional term at the end of this sequence will give

us an even number of terms, so we’ll include xk+1 = a + k ∙ d. Now we consider the arithmetic series

a + (a + d) + (a + 2d) + … + [a + (k – 1) · d] + (a + k · d). This series has k + 1 terms, which is even as k is 

odd, so this series will equal (x1 + xk+1) ∙              , or (a + a + k ∙ d) ∙            . However, this is not the series

in which we are interested, and we need to remove the term we added on. Therefore, our original 

series will equal (a + a + k ∙ d) ∙            − (a + k ∙ d). At this point some algebraic manipulation seems

necessary:

– a – k ∙ d (we write the first term as a single fraction and distribute the negative

across the second term)

– a – k ∙ d (expanding the numerator of the fraction)

                                                            (creating a common denominator, so the terms can be combined  

into one fraction)

(subtracting the fractions)

k + 1
2

k + 1
2

k + 1
2

(2a + k ∙ d) ∙ (k + 1)
2

2ak + 2a + k2d + k ∙ d)
2

2ak + 2a + k2d + k ∙ d)
2

2a
2

2k ∙ d
2‒      ‒

2ak + k2d ‒ k ∙ d)
2
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(factoring out the common factor of k from each term)

(2a + kd – d) ∙        (rewriting multiplication)

[2a + (k – 1) ∙ d] ∙      (factoring out d from the second and third terms inside parentheses)

[a + a + (k – 1) ∙ d] ∙      (splitting apart 2a into a + a)

[x1 + xk] ∙      (substituting x1 = a and xk = a + (k − 1) ∙ d)

But this is exactly the same formula we had when the series had an even number of terms! Amaz-

ing! So, the same formula works whether our arithmetic series has an even number of terms or an 

odd number of terms.

(2a + kd – d) ∙ k
2

k
2

k
2

k
2

k
2

An arithmetic series with k terms is equal to (x1 + xk) ∙     .
k
2

ExamplE 2.1S: An arithmetic series equals 624. The first term of this series is 3, and the sec-

ond term is 5. What is the last term in this series?

Solution: We know that x1 = 3 and d = 2. The fact that the series equals 624 means that 

(x1 + xk ) ∙      = 624, but we only know x1 and are trying to find xk . As xk = a + (k − 1) ∙ d in general, for

this problem xk = 3 + 2 ∙ (k −1), or xk = 1 + 2k. Substituting in now yields (3 + 1 + 2k ) ∙      = 624 , or

(4 + 2k) ∙ k = 1248. This is a quadratic in terms of k, so rearranging gives us 2k2 + 4k − 1248 = 0 or

k2 + 2k − 624 = 0. A quick check of the factors of 624 reveals 26 and 24, so (k + 26) ∙ (k − 24) = 0 , and

k = –26 or k = 24. Certainly our arithmetic series should have a positive number of terms, so there 

are 24 terms in our series. This means the last term xk = 1 + 2k is 49.

k
2

k
2
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What about geometric series? As we just saw, the pairing trick only works for arithmetic series. Can some-
thing be done to make geometric series easy to find?

ExamplE 2.1t: Find the geometric series 3 + 6 + 12 + 24 + 48 + 96 + 192 + 384.

Solution: Although this series does not have very many terms, and we could just add them all up, 

this would not lend itself to a general method. Let’s try something else. To find an arithmetic series 

with an odd number of terms, we added on the next term, which changed the series into some-

thing nicer. Then we went back from that series to the original series in which we were interested. Is 

adding a term to this geometric series helpful?

We are interested in 3 + 6 + 12 + 24 + 48 + 96 + 192 + 384, so let’s call this number S. Consider  

3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 + 768. This is clearly S + 768, so: 3 + 6 + 12 + 24 + 48 + 96 + 

192 + 384 + 768 = S + 768. Subtracting 3 from both sides yields: 6 + 12 + 24 + 48 + 96 + 192 + 384 

+ 768 = S + 768 – 3.

Now every term on the left-hand side shares a factor of 2, so factoring this out gives us: 2(3 + 6 + 12 

+ 24 + 48 + 96 + 192 + 384) = S + 768 – 3. But wait! 3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 = S, so: 2S

= S + 768 – 3.

This equation can easily be solved for S, and so this geometric series is 765. Amazing! But will this 

trick always work?

ExamplE 2.1u: Find the geometric series 36 + 12 + 4 +      +    +        +       +          .

Solution: Let                                         = S. The ratio for this geometric series is 1
3  , 

so the next term would be       . Let’s add this term to our series and then try to rewrite both sides 

including S.

4
3

4
9

4
27

4
81

4
243

36 + 12 + 4 +      +    +        +       +        4
3

4
9

4
27

4
81

4
243

4
729

36 + 12 + 4 +      +    +        +       +          +          = S + 4
3

4
9

4
27

4
81

4
243

4
729

4
729
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Now the tricky part. We need to rewrite the left-hand side as the original series. In order to turn 12 

into 36 and 4 into 12, we need to factor out      and write this as:1
3

36 + 12 + 4 +      +    +        +       +            = S +            – 364
3

4
9

4
27

4
81

4
243

4
729











1
3

S = S +            – 364
729

1
3

Solving for S gives us:               =     S, so S =              .26240
729

2
3

13120
243

Let’s try this strategy in general on a generic geometric series and see if we can develop a formula.

ExamplE 2.1v: What is a geometric series with k terms and a ratio of r?

Solution: Consider the generic geometric series a + a ∙ r + a r 2 +…+ a ∙ r k−2 + a ∙ r k−1. Let this equal S.

The next term will be a ∙ r k , so: a + a ∙ r + a ∙ r2 +…+ a ∙ r k−2 + a ∙ r k−1 + a ∙ r k = S + a ∙ r k.

Moving the a to the other side of the equation gives us:

a ∙ r + a ∙ r 2 +…+ a ∙ r k−2 + a ∙ r k−1 + a ∙ r k = S + a ∙ r k − a.

Every term on the left-hand side now has a factor of r, so factoring this out yields:

r ∙ (a + a ∙ r +…+ a ∙ r k−3 + a ∙ r k−2 + a ∙ r k−1) = S + a ∙ r k − a

But a + a ∙ r + a ∙ r 2 +…+ a ∙ r k−2 + a ∙ r k−1 is S, so:

r ∙ S = S + a ∙ r k − a

Now we solve for S:

r ∙ S − S = a ∙ r k − a

S ∙ (r −1) = a ∙ r k − a

S = 
a ∙ r k – a

r – 1

12 + 4 +      +    +        +       +           +         = S +         – 364
3

4
9

4
27

4
81

4
243

4
729

4
729
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A geometric series with first term a, ratio r, and with k terms is equal to S =          . Altern- 

atively, we can write this formula by referencing the terms in the sequence: S =            , where 

xk is the last term in the series and xk + 1 is the next term in the sequence (but is not included in the 

series).

a ∙ r k – a
r – 1

x k + 1 – x1
r – 1

This formula does not hold if the ratio is equal to 1 because the method used does not work. (Why not? 
What is the sum if r = 1?)

ExamplE 2.1w: What is the value of the geometric series 1 +      +    + . . . +         +         ?

Solution: Although we could determine the number of terms in this series and use S =         , 

since we know the last term in this series, we will use S =              . The ratio is    , and as xk =         ,  

xk+1 =            . Therefore, the series equals =            .

1
2

1
4

1
512

1
1024

a ∙ r k – a
r – 1

x k + 1 – x1

r – 1
1
2

1
1024

1
2048

1
2048

– 1

1
2

– 1

2047
1024

This example brings up an interesting question: what happens if our geometric series has an infinite num-
ber of terms? Clearly if an arithmetic series has an infinite number of terms, the series will equal posi-
tive infinity (if d > 0) or negative infinity (if d < 0). If the absolute value of a geometric series increases  
(if |r| > 1), then the absolute value of the series will equal positive infinity. But, what happens if the terms 
in a geometric series get closer to 0 (if |r| < 0), as in this example?

ExamplE 2.1x: What is the value of the infinite geometric series 1 +      +    +     + . . . ?
1
2

1
4

1
8
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Solution: Since this is an infinite geometric series with a ratio of     , the terms of the sequence 

are approaching 0. This means the “last term” in this series is 0. (Technically, there is no last 

term since the series goes on forever, but the terms get close enough to 0 that we can’t tell 

the difference. This will seem a lot less like hand waving if the reader has studied limits.) 

Using S =                   xk+1 = 0 and x1 = 1, so S =                 , and S = 2.

1
2

x k + 1 – x1

r – 1
0 – 1
1
2

– 1

In fact, as long as xk ≈ 0, xk+1 ≈ 0 as well, and the infinite geometric series will have a finite sum. In this 
case, S =               simplifies to S =         which we can rewrite as S =         .x k + 1 – x1

r – 1
– x1

r – 1
x1

1 – r

An infinite geometric series equals a finite number if xk ≈ 0 for sufficiently large values of k. In this 
case, S =         .a

1 – r

ExamplE 2.1y: Determine the value of the infinite geometric series 2 −     +     –       +        – . . .
4
3

8
9

16
27

32
81

Solution: The initial value of this geometric sequence is 2, and r = −   . Since xk ≈ 0 as k in-

creases, this infinite geometric series is a finite value given by the formula S =       . Therefore,  

S =                 , and S =     .

2
3

a
1 – r

2

1 –  – 









2
3

6
5

Arithmetic and geometric series are not the only series that have formulas for determining their values, but 
they are the two types of series that often occur in applied problems. We will see a few of these applications 
throughout the Mathematics Resource Guide.
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Writing out a series term by term can be very tedious, especially if there are many terms in the series. Even 
if we write out the series using an ellipsis, as in 3 + 7 + 11 + 15 + … + 399 + 403 + 407, we still don’t know 
how many terms are in the series, a piece of information we usually would like to have.

Recall our notation for sequences: {xi = 4i −1} means start with i = 1 and then generate terms by increasing 
the value of the index. Therefore, {xi = 4i −1} represents the sequence 3, 7, 11, 15, … . Note that this se-
quence goes on forever, whereas the series 3 + 7 + 11 + 15 + … + 399 + 403 + 407 does not. We determined 
there were 102 terms in this sequence, so {xi = 4i − 1}i=1 generates the sequence that corresponds to this 
series. But how do we denote that we are interested in the series as opposed to the sequence?

102

Mathematicians use sigma notation, ∑ , to denote a series. ∑ f (i) means the series that corresponds

to the sequence generated by the formula f (i) where the index begins at a and ends at b.

b

i=a

For example, to express the series 3 + 7 + 11 + 15 + … + 399 + 403 + 407 in sigma notation, we write  

∑4i − 1. This notation says to create the sequence given by {xi = 4i − 1}    , and then add all the terms to-

gether to create the series. Sometimes parentheses are used around the formula that generates the terms to 

avoid potential confusion, as in ∑ (4i − 1).

102

i=1

102

i=1

102

i=1

ExamplE 2.1z: Write the following series in sigma notation: 1 + 4 + 9 + 16 + … + 196 + 225 

+ 256.

16

i=1

Solution: The terms of this series are consecutive squares, so xi = i2. The first term is 12, and the last 

term is 162. We write ∑ i 2

ExamplE 2.1aa: Determine the value of ∑   .
10

k=1

1
k
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Solution: This series has 10 terms, since k is going from 1 to 10. The sequence is 1,     ,     ,     ,     ,     , 

    ,     ,     ,        , so the corresponding series is the sum of these terms, which equals            .

1
2

1
3

1
4

1
5

1
7

1
8

1
9

1
10

1
6

7381
2520

Sigma notation also gives us a potentially nicer way to write the formulas for arithmetic and geometric 
series.

∑ (a + (i – 1) ∙ d) = [2a + (k − 1) ∙ d] ∙    
k

i=1

k
2

∑ (a ∙ r i–1) =               
k

i=1

a ∙ r k – a
r – 1

If a ∙ r i ≈ 0 for sufficiently large i, ∑ (a ∙ r i–1) =        .
∞

i=1

a
1 – r

Don’t be confused by the use of i and k in these equations. Here i is being used as the index, and k is being 
used as the last value of the index in the series. Since these formulas represent generic series, the number 
of terms is unknown and must be represented by a variable that is different from the variable representing 
the index. Any time there is some confusion about a series, especially in sigma notation, writing out a few 
terms is always a good idea to get a feel for what is going on. For example, the arithmetic series formula 

in sigma form may be particularly troublesome. What exactly is going on with                    ? Let’s 

 write out a few terms.

k

i=1
∑ (a + (i – 1) ∙ d)
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When i = 1, a + (i − 1) ∙ d = a, so x1 = a.

When i = 2, a + (i −1) ∙ d = a + d, so x2 = a + d.

When i = 3, a + (i −1) ∙ d = a + 2d, so x3 = a + 2d.

When i = k, a + (i −1) ∙ d = a + (k −1) ∙ d, so xk = a + (k −1) ∙ d.

So this series is a + (a + d)+ (a + 2d)+ (a + 3d) +…+ (a + (k −1) ∙ d), the generic arithmetic series with k 
terms.

Sigma notation is an extremely powerful tool that mathematicians use to write out complicated and long 
sums in nice shorthand. Mastering sigma notation takes a lot of time and practice. If you remember what 
sigma notation means, you can always write out enough terms to get a feel for what is going on. Now that 
we have some idea of how to use sigma notation, we will try to utilize sigma notation in our next topic: 
polynomials.

Polynomials are a topic most students encounter in high school mathematics, but perhaps only briefly. 
Most polynomials encountered in high school math courses are either of degree 1 (linear) or degree 2 (qua-
dratic). Usually degree 3 (cubics) polynomials are introduced, but higher degrees are not usually discussed 
much, if at all.

Polynomials are also usually studied in the context of functions rather than as entities unto themselves. 
This means that when we are presented with a polynomial such as 2x2 + 5x − 3, we typically think of this 
as f (x) = 2x2 + 5x − 3 and concern ourselves with the value of the function for different values of x, the 
graph of the function, the roots of the function, how the factored form of the function relates to the roots, 
and other questions about the properties of the function. Rather than considering questions such as these, 
here we will focus on the polynomial itself.

A polynomial is an algebraic object consisting of terms. Each term is made up of a variable, usually x, 
raised to a different non-negative power and a coefficient, possibly 1 or 0. By convention, the polynomial is 
written with the powers of x in order, either from highest to lowest or lowest to highest, whichever is more 
convenient. The highest power of x with a non-zero coefficient is called the degree of the polynomial.

The following are examples of polynomials and their degrees:
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 2x2 + 5x − 3; degree 2

 7x3 + 7x2 + 12; degree 3

−3x5 + 4x4 + 5x3 − 6x; degree 5

1 + x + 2x2 + 3x3 + 5x4 + 8x5 ; degree 5

1 +    x +    x2 +     x3 +      x4 +      x5 +      x6 +       x7 ; degree 7

In general, a polynomial looks sort of like a series, but with powers of x attached to each term. For the sake 
of notation, we start numbering our terms with i = 0 as opposed to i = 1 as is usually done with series. This 
is helpful because then the index matches the exponent for the variable. A general polynomial is therefore 
written as a0 + a1x + a2x2 + a3x3 + a4x4 + … akxk.

Most polynomials will not have a nice sequence of a0, a1, a2, etc., as the coefficients in a polynomial rarely 
follow a pattern that can be represented in a mathematical formula. So, although the sequence a0, a1, a2 … 
consists of “random” values, we can still think of a polynomial as a series. If it can be thought of as a series, 
we can write it in sigma form.

1
2

1
4

1
8

1
16

1
32

1
64

1
128

A polynomial of degree k can be written in sigma form as           .
k

i=0
∑ aixi

Again, if this is confusing, writing out a few terms will help us see what is going on.

When i = 0, ai xi = a0 ∙ x0, so the first term is a0.

When i = 1, ai xi = a1 ∙ x1, so the second term is a1x.

When i = 2, ai xi = a2 ∙ x2, so the third term is a2x2.

When i = k, ai xi = ak ∙ xk, so the kth term is ak xk.

Since this is a series, we add these terms together, and our result is a0 + a1x + a2x2 + … + ak xk, our generic 
polynomial.
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When polynomials are added and subtracted, we use an idea that in high school mathematics is generally  
called “combining like terms,” a particularly vague and potentially confusing phrase. What exactly is a  
“like term”?  How do we combine them? Why do we only combine like terms, and what is wrong with  
combining unlike terms?

These ideas are usually not given adequate or rigorous answers in most high school math courses, and so 
we will attempt here to address these questions mathematically using the series representation of a poly-
nomial.

Suppose we have two different arrays of numbers that we wish to add together, like two different rows in 
a spreadsheet. Adding the rows together should result in a new row where each entry in the row consists 
of the sum of the corresponding entries in the original rows. The first entry should be the sum of the two 
original first entries, the second entry should be the sum of the two original second entries, and so on. If 
we are adding two sequences together, the same idea should apply.

ExamplE 2.2a: What sequence results if the following two sequences are added: (3, 7, 11, 15, 

19, … ) + (1, 4, 9, 16, 25, … )?

Solution: The new sequence will be 4, 11, 20, 31, 44, … .

ExamplE 2.2b: What polynomial results if the following two polynomials are added:  

(3 + 7x + 11x2 + 15x3 + 19x4 + … ) + (1+ 4x + 9x2 + 16x3 + 25x4 + … )?

Solution: The new polynomial will be 4 + 11x + 20x2 + 31x3 + 44x4 + … .

Thought of this way, the coefficients of the polynomial are of central importance, representing the terms in 
a sequence. The variables raised to different powers are of secondary importance, acting more like place-
holders or separators. When we add two polynomials, the coefficients of the x3 terms are added together 
because these coefficients are in the same place in the sequence (the fourth term, to be precise). This is why 
it is helpful to have both polynomials written in the same form, either lowest power of x to highest power 
of x or vice versa. If a polynomial does not have a term from a particular power, sometimes we write a term 
with a coefficient of 0 to avoid potential confusion.
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We can also write the sum of these polynomials in sigma form.

ExamplE 2.2c: Write the following polynomial sum in sigma form: (3+ 7x +11x2 +15x3 +19x4 + 

… ) + (1+ 4x + 9x2 +16x3 + 25x4 + …).

Solution: The first series can be written as              , and the second can be written as 

                          , so it should not surprise us that the sum can be written as                                            .

∞

i=0
∑ (3 + 4i) ∙ xi

∞

i=0
∑ (i + 1)2 ∙ xi

∞

i=0
∑ [3 + 4i + (i + 1)2] ∙ xi

Since the index starts and ends at the same value, the formulas for the terms of series can be added directly 
since the terms in the new series are precisely the sum of the terms of the original series. Of course, this 
can only be done with polynomials whose coefficients are generated by a nice formula, which is not often 
the case.

ExamplE 2.2d: Subtract the following polynomials: (6 + 2x − 3x2 + x4 ) − (3x + 5x2 − 7x3).

Solution: Note that both of these polynomials have terms that are “missing,” meaning the coeffi-

cient for some terms is 0. Including these terms gives us (6 + 2x – 3x2 + 0x3 + x4 ) – (0 + 3x + 5x2 – 7x3 + 

0x4). Imagining these polynomials as sequences and then combining the terms in the same position 

in the sequence yields 6 − x − 8x2 + 7x3 + x4 .

Adding and subtracting polynomials is relatively straightforward; we will turn our attention next to mul-
tiplying polynomials.

We will assume the reader has some familiarity with multiplying or “expanding” polynomials from high 
school Algebra 1 and Algebra 2. Most high school students learn how to multiply polynomials by rely-
ing on a strange algorithm called “FOIL” (an acronym for First terms, Outside terms, Inside terms, Last 
terms), which only works for certain small degree polynomials. This thought process is inefficient and does 
not translate well to general polynomials.
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Some high school students are familiar with the distributive property and may multiply out larger-degree 
polynomials by repeatedly using the distributive property and just “keep ‘FOIL’-ing.” This ignores the fact 
that “FOIL” only works when we have two polynomials to multiply together and each of these polynomials 
has only two terms. These ways of multiplying polynomials are either limited, slow, or both.

In this section, we will try to improve upon these methods by continuing to focus on the coefficients of our 
polynomials rather than on the powers of the variable. We will begin with multiplying two polynomials 
that both have two terms.

ExamplE 2.2E: What is (x − 3) ∙ (2x + 1)?

Solution: This is a classic “FOIL” problem, or perhaps a double-distribution problem. Most students 

in high school mathematics will write out: 

 (x − 3) ∙ (2x + 1)

 2x2 + x − 6x − 3

Then we “combine like terms” to get 2x2 − 5x − 3.

All well and good, but very slow, and it doesn’t extend to harder problems very well.

ExamplE 2.2f: What is (x2 + 11x − 2) ∙ (3x3 − 16x2 + 1)?

Solution: Our original problem had two terms in each polynomial, so there were a total of four 

terms. Our new problem will have nine terms, and then these terms must be combined. The large 

number of calculations makes this method very slow, and also makes it more likely we will make a 

mistake. Let’s return to our original problem and see if there is a nicer way to perform this calcula-

tion.
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ExamplE 2.2E (Revisited): What is (x − 3)  (2x +1)?

Solution: Rather than focusing on the terms in the given polynomials, let’s think about the polyno-

mial that is our answer. What will the highest power of x be in this polynomial? The highest power 

of x will be 2, and it will come from x ∙ 2x , so we will have 2x2. Will there be any terms of just x? Yes.

These will come from x ∙ 1 and −3 ∙ 2x , so we will have a total of −5x . Will there be a constant term?

Yes, this will come from −3 ∙ 1, so it will be –3. Therefore, our answer is 2x2 − 5x − 3.

This may not seem faster now, but this idea extends to larger degree polynomial multiplication problems 
and makes them much easier.

ExamplE 2.2g: What will the coefficient of x4 be in (x2 +11x − 2) ∙ (3x3 −16x2 +1)?

Solution: Rather than focusing on the result of each individual distribution or “FOIL,” we will focus 

on the form of the answer and group coefficients rather than “like terms.” In this product, there will 

be two terms of x4 : one from x2 ∙ −16x2, and one from 11x ∙ 3x3 , giving us a total of 17x4 , so the coef-

ficient will be 17.

ExamplE 2.2f (Revisited): What is (x2 + 11x − 2) ∙ (3x3 − 16x2 + 1)?

Solution: The highest power of x will be x5, which will result from x2 ∙ 3x3 , for 3x5. This will be the

only term that generates x5. 

As we saw above, the coefficient for x4 will be 17.

The terms that will generate x3 are 11x ∙ −16x2 and −2 ∙ 3x3, for a total of −182x3.

The terms that will generate x2 are x2 ∙ 1 and −2 ∙ –16x2, for a total of 33x2.
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The only term that will generate x is 11x ∙ 1, which is 11x.

And, the only constant term will clearly be –2. Therefore, the product of these two polynomials is 

3x5 + 17x4 − 182x3 + 33x2 + 11x − 2.

A few remarks on this method or procedure. First, the Multiplication Principle tells us there should be  

3 · 3 = 9 total terms to consider, and if desired we can keep track of the number of terms during the multi-

plication to make sure nothing was missed. In ExamplE 2.2f, the number of terms for each power of x was 1, 

2, 2, 2, 1, and 1, which sum to 9 as desired. Indeed, this use of the Multiplication Principle points out that 

each term in the product is generated by selecting one term from the first polynomial and one term from 

the second polynomial. This idea will become very important in the next part of the Mathematics Resource 

Guide. Second, once practiced, this method is faster and more accurate than “FOIL”-ing or distributing 

out all terms and then combining them. If mistakes are made, they are easier to find and fix. This method 

is mostly a manner of shifting the focus from the variable to the coefficients. We will conclude this section 

with one slightly more complicated example.

ExamplE 2.2h: What is (x − 3) ∙ (x2 + 5x + 1) ∙ (2x − 5)?

Solution: This product should have a total of 2 · 3 · 2 = 12 terms, so we will keep track of these as we 

go to make sure we didn’t miss anything.

The highest power of x will be x4 , which will come from x ∙ x2 ∙ 2x, for 2x4 .

The x3 term will come from x ∙ x2 ∙ −5,  x ∙ 5x ∙ 2x, and −3 ∙ x2 ∙ 2x, for a total of –5 + 10 – 6 = –x3.

The x2 term will come from x ∙ 5x ∙ −5, x ∙ 1 ∙ 2x, −3 ∙ x2 ∙ −5, and −3 ∙ 5x ∙ 2x, for a total of –25 + 2 + 15 

– 30 = −38x2.

The x term will come from x ∙ 1 ∙ −5, −3 ∙ 5x ∙ −5, and −3 ∙ 1 ∙ 2x, for a total of –5 + 75 – 6 = 64x .

The constant term will be 15, and so the product of these three polynomials is  

2x4 – x3 − 38x2 + 64x + 15.

The number of terms for the powers of x were 1, 3, 4, 3, and 1, for a total of 12, as expected.

mathResource.indd   51 3/20/2015   2:09:05 PM

U
SA

D
 - 

Sa
nt

a 
An

a,
 C

A
N

or
th

w
es

t P
a.

 C
ol

le
gi

at
e 

A
ca

de
m

y 
- 

E
rie

, P
A



2018–2019 Mathematics Resource Guide
5152 USAD Mathematics Resource Guide • 2015-2016

In the next section, we will consider multiplying a polynomial by itself many times, or raising it to various 

powers. This will lead us to the Binomial Expansion Theorem.

In the previous section, we studied multiplying polynomials. In this section, we will look at a specializa-

tion of multiplying polynomials: raising a polynomial to a power. In order to keep our discussion somewhat 

limited in scope, we will look at only binomials, or polynomials with two terms. The generalization of 

taking a binomial to a power is called the Binomial Expansion Theorem.

Let’s start with a simple binomial: (x + 1). First, (x + 1)2 = x2 + 2x + 1, so let’s move to (x + 1)3.

ExamplE 2.3a: What is the expanded form of (x + 1)3?

Solution: So we’re sure we don’t miss anything, we’ll write it out as (x + 1) ∙ (x + 1) ∙ (x + 1). The high-

est power of x is x3, which comes from x ∙ x ∙ x , which is x3 . The x2 term will come from x ∙ x ∙ 1, x ∙ 1
∙ x, and 1 ∙ x ∙ x, for 3x2. The x term will come from x ∙ 1 ∙ 1, 1 ∙ x ∙ 1, and 1 ∙ 1 ∙ x, for 3x. The constant

term will be 1, so (x + 1)3 expands to x3 + 3x2 + 3x + 1.

That seemed straightforward enough. Let’s try a higher power.

ExamplE 2.3b: What is the expanded form of (x + 1)10 ?

Solution: So we can keep track of everything, we’ll write:

(x + 1)10 = (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1) · (x + 1)

The highest power of x is clearly x10, and this only comes from xxxxxxxxxx, so there is only one x10. 

The x9 terms come from selecting the x from every (x + 1) except one, so there should be 9 ways to 

do this, for 9x9.
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But what about x8? To generate an x8, we need to pick the x from eight terms and the 1 from two 

terms, like xxxxxxxx11. But how many ways is this possible? Listing them all out seems extremely 

inefficient and time consuming: xxxxxxx1x1, xxxxxx1xx1, … . How many ways can this happen? We 

have ten spaces, and we need to select 8 of them to place an x. We can’t select a place more than 

once, and the order of selection does not matter. This sounds like a job for…combinations!

So, there should be         = 45 ways to select eight x’s and two 1’s from the ten terms of (x + 1), so the 

x8 term will be 45x8 .

Will this happen with every power of x? To generate x7, we need seven x’s and three 1’s, like xxxxx1x1x1. 

How many ways can this happen? With ten spots, we need to select seven of them as x, we can-

not select a spot more than once, and the order of selection does not matter. So, there are indeed          

        = 120 ways to create an x7, which means the x7 term will be 120x7.

Therefore, there are       ways to generate a term of xk, so each term in the expansion of (x + 1)10  

will be of the form       ∙ xk . Writing this out while leaving the coefficients in terms of combinations

yields:

(x + 1)10 =         ∙ x10 +          ∙ x9 +         ∙ x8

+         ∙ x7 +         ∙ x6 +          ∙ x5 +          ∙ x4 +          ∙ x3 +         ∙ x2 +          ∙ x1 +         ∙ x0.

This is, of course, a bit cumbersome to write, so writing this polynomial in sigma form makes sense. 

Therefore, (x + 1)10 =              ∙ xk.
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This is a very nice generalization. Let’s try another expansion like this, but one that is a little more com-
plicated, and see if the same type of mathematical structure applies.
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ExamplE 2.3c: What is (2x + 5)15 ?

Solution: Rather than write out all fifteen terms of 2x + 5, we’ll imagine them written out in a long 

line. As in ExamplE 2.3b, each term in the product is generated by selecting either 2x or 5 from each 

of the fifteen terms and multiplying them together.

So, (2x) ∙ 5 ∙ (2x) ∙ (2x) ∙ (2x) ∙ 5 ∙ (2x) ∙ (2x) ∙ 5 ∙ (2x) ∙ (2x) ∙ (2x) ∙ 5 ∙ (2x) ∙ (2x) is one possible term in the 

expansion, and this term would be grouped with the other x11 terms. Let’s go through a few powers 

of x and try to determine the coefficients.

The highest power of x will be x15 , and this will occur when the 2x is selected from all fifteen terms. 

(2x)15 = 215 ∙ x15 , and so the coefficient of x15 will be 215, or 32,768.

The next highest power of x is x14 , and these will be generated by selecting the 2x from every term 

except one, from which a 5 will be selected. Each of these terms will therefore look like:

(2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ 5,

and so each will equal (2x)14 ∙ 5 = 214 ∙ 5 ∙ x14 , or 81920 ∙ x14 . But how many of these terms will be cre-

ated? With fifteen spots and needing to select 14 of them as 2x (or one of them as 5), there should 

be 15 ways to do this. Note that         =        = 15, because selecting 14 spots for the 2x automatically 

selects the spot for the 5, and vice versa. Therefore, the final coefficient of x14 will be 81,920 · 15 = 

1,228,800.

Sometimes the numerical values disguise rather than assist generalization. Instead of thinking 

about this as 1228800 ∙ x14 , let’s keep track of where it came from:         ∙ (2x)14 ∙ 5. Again, this calcula-

tion makes sense: when selecting 2x from 14 of the 15 terms, 2x will be raised to the 14th power, and 

5 will be selected from the last term. This selection can then occur in          ways, since there are 15 

terms and we are selecting the 2x from 14 of them.

What about x13 ? These are generated by selecting the 2x from 13 of the 15 terms. For example:

(2x) ∙ 5 ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ 5 ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x) ∙ (2x). Each of these terms will 

therefore equal (2x)13 ∙ 52. But how many of these terms will there be? With 15 spots, selecting
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13 of them to be 2x needs to occur without replacement, and the order of selection does not mat-

ter. So this can happen in         ways, for a final answer of         (2x)13 ∙ 52.

It seems this pattern will continue for each power of x throughout our expansion. The x4 term should 

come from        (2x)4 ∙ 511. (Convince yourself this is true if you are unsure!) Therefore, we can write

out the product this way:

(2x + 5)15 =         ∙ (2x)15 ∙ 50 +         ∙ (2x)14 ∙ 51 +        ∙ (2x)13 ∙ 52 + …

+        ∙ (2x)2 ∙ 513 +         ∙ (2x) ∙ 514 +         ∙ (2x)0 ∙ 515.

This is, of course, long and tedious. Shouldn’t there be a nicer way to write this?

How did we know how to write down each term in the form above? The 2x was raised to a power, 

5 was raised to the power of 15 minus the power of 2x, and both of these were multiplied by 15 

choose the power of 2x. Rather than saying “the power of 2x,” if we say k, we are then able to write 

this polynomial in sigma form:

(2x + 5)15 =             ∙ (2x)k ∙ 515−k .

Let’s make sure we understand this because, as we can hopefully see, this is an extremely powerful 

notational move.

When k = 0, the term is       ∙ (2x)0 ∙ 515 , which is the last term in the expansion as written out above.

When k = 1, the term is        ∙ (2x)1 ∙ 514 , which is the second to last term in the expansion as written

out above.

When k = 4, the term is         ∙ (2x)4 ∙ 511, which is what was predicted above.

When k = 14, the term is          ∙ (2x)1 ∙ 514 , which is the second to last term in the expansion as written

out above.
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So, other than listing the terms from lowest power of x to highest power of x, this form is identical to 
the expansion written out term by term (the long way). Based on our examples, it seems we are ready to 
generalize.
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When expanding a binomial in the form (x + y)n, each term in this expansion is of the form 

     ∙ xk ∙ yn−k . Therefore, (x + y)n =          ∙ xk ∙ yn−k .
n

k=0
∑ n

k
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n
k
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
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Before we use this theorem creatively, let’s make sure we can use it in the traditional sense: finding coef-
ficients of the expansion of binomials raised to powers.

example 2.3d: What is the coefficient of z6 in the expansion of (z − 3)9?

soluTion: First we will walk through this problem as we did with our two previous examples—with-

out using the binomial expansion theorem directly. Then we will use the theorem. (And hopefully 

reach the same answer!)

In the expansion of (z − 3)9, each term is generated by selecting either z or –3 from each of the nine 

terms. To get a term with z6 , z must be selected from six terms and –3 selected from three terms. For 

example, (−3) ∙ z ∙ z ∙ z ∙ (−3) ∙ z ∙ z ∙ (−3) ∙ z is one such term. Therefore, each term will be –27z6. (Why 

will the coefficient be negative?) But how many of these terms will be created? With nine spots and  

needing to select six of them for z, this term can be built in       = 84 different ways. Therefore, the 

coefficient of z6 will be 84 ∙ (−27) = –2268.

We used this thought process when we were developing the Binomial Expansion Theorem. Using 

the theorem directly, then, should result in the same calculation.

As (x + y)n =            ∙ xk ∙ y n−k, substituting z for x, –3 for y, and 9 for n yields:

(z – 3)9 =              ∙ z k  (−3)9−k. The z6 term will occur when k = 6, so the term will be         ∙ z6 ∙ (−3)3 , which

is −2268z6, as above.
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

Of course, if the Binomial Expansion Theorem was only used for expanding binomials, it wouldn’t be 
that interesting or useful. Later in the Mathematics Resource Guide, we will see how the Binomial Expan-
sion Theorem is connected to the Binomial Distribution, an important topic in statistics. Because of its
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connections to combinations, the Binomial Expansion Theorem is also important in the study of combina-
torics. We will conclude with one introductory example of this use of the Binomial Expansion Theorem.

ExamplE 2.3E: Prove        +         +        + . . . +             +        = 2n for all n.

Solution: There are many ways to prove this classic result, and although no one method is “more 

correct” than another, the use of the Binomial Expansion Theorem is particularly nice.

To see how we might think to use the Binomial Expansion Theorem, let’s start by writing the sum of 

the combinations in sigma form:         +        + … +             +        =            . This looks promising, as it is 

part of the Binomial Expansion Theorem, (x + y)n =            ∙ xk ∙ yn−k . We want the combinations portion

of the sigma expression, but not the x k or y n−k . How can we get these terms to not be important 

anymore, or not impact the right-hand side of the equation? The combinations are multiplied by 

these terms, so if we want them to go away, maybe we can let x = 1 and y = 1. Then the right-hand 

side of the equation will be what we want, just             , since 1 to any power is always 1.

But wait! Substituting x = 1 and y = 1 into the Binomial Expansion Theorem gives us what we need! 

(x + y)n =            ∙ xk ∙ yn−k , so after the substitution, we have (1+ 1)n =            ∙ 1k ∙ 1n−k, or 2n =            , 

and we are done.

n
0











n
1











n
2











n
n










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
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As stated, we will return to the Binomial Expansion Theorem when we discuss the Binomial Distribution 
in the statistics portion of the Mathematics Resource Guide (strange that those would be related…). For now, 
we will shift our focus to a topic most people will interact with at some point in their lives: borrowing and 
investing money.

When we loan money to our friends or family, usually we don’t charge them interest. Even if we do charge 
them interest, it is probably in the form of a fixed fee per time period, say $5 every week. This type of in-
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connections to combinations, the Binomial Expansion Theorem is also important in the study of combina-
torics. We will conclude with one introductory example of this use of the Binomial Expansion Theorem.

ExamplE 2.3E: Prove        +         +        + . . . +             +        = 2n for all n.

Solution: There are many ways to prove this classic result, and although no one method is “more 

correct” than another, the use of the Binomial Expansion Theorem is particularly nice.

To see how we might think to use the Binomial Expansion Theorem, let’s start by writing the sum of 

the combinations in sigma form:         +        + … +             +        =            . This looks promising, as it is 

part of the Binomial Expansion Theorem, (x + y)n =            ∙ xk ∙ yn−k . We want the combinations portion

of the sigma expression, but not the x k or y n−k . How can we get these terms to not be important 

anymore, or not impact the right-hand side of the equation? The combinations are multiplied by 

these terms, so if we want them to go away, maybe we can let x = 1 and y = 1. Then the right-hand 

side of the equation will be what we want, just             , since 1 to any power is always 1.

But wait! Substituting x = 1 and y = 1 into the Binomial Expansion Theorem gives us what we need! 

(x + y)n =            ∙ xk ∙ yn−k , so after the substitution, we have (1+ 1)n =            ∙ 1k ∙ 1n−k, or 2n =            , 

and we are done.
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As stated, we will return to the Binomial Expansion Theorem when we discuss the Binomial Distribution 
in the statistics portion of the Mathematics Resource Guide (strange that those would be related…). For now, 
we will shift our focus to a topic most people will interact with at some point in their lives: borrowing and 
investing money.

When we loan money to our friends or family, usually we don’t charge them interest. Even if we do charge 
them interest, it is probably in the form of a fixed fee per time period, say $5 every week. This type of in-
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terest is called simple interest and is not how banks charge interest. When banks charge interest, interest 
is charged on the interest previously charged. This type of interest is called compound interest. Unfor-
tunately, this type of interest results in more money being owed, especially for larger amounts of money 
borrowed over a longer period of time. Fortunately, bank accounts accrue interest in the same way, so that 
more money is earned for larger amounts of money or if money is invested over a longer period of time. We 
will begin by looking at a few examples and will then generalize a formula for compound interest.

When we say that a bank account earns 2.5% interest, what we mean is that after a period of time (most 
banks calculate interest monthly or quarterly), 2.5% of the amount of money currently in the account is 
added to the account. When we are dealing with a compound interest situation, the interest previously 
earned is included the next time compounding occurs. This interest is then, in turn, included in the 
amount the next time interest is added. It seems that a recursive formula may be a good place to start.

ExamplE 2.4a: A bank account starts with $500 and earns 2.5% interest each year. Write a 

recursive formula for the amount of money in the bank account after t years.

Solution: Since the bank account has $500 to start, a0 = $500. We’ll use a0 because there is $500 after 

“0 years,” so the index will match the number of years that have passed. Since the account earns 

2.5% interest each year, we add 2.5% of the amount of money previously in the account to get to 

the next year’s amount: ai = ai−1 + (0.025)ai−1. Noticing that both of these terms contain ai−1 allows us 

to simplify this to ai = 1.025 ∙ ai−1. Therefore, our recursive formula is a0 = $500; ai  = 1.025 · ai−1.

Writing out the terms of this sequence yields a0 = $500, a1 = $512.50, a2 = $525.31, a3 = $538.45, and so 
on. Is there a direct formula for this sequence?

Yes! Since this sequence was formed by multiplying to get from one term to the next, this is a geometric 
sequence. We recall that a geometric sequence with the recursive formula x1 = a; xi = r ∙ xi−1 has the direct 
formula xk = a ∙ r k−1. However, we began our index in this case with 0 as opposed to 1, so xk = a ∙ r k. (Think 
about why this is true—now we need to multiply by r once to get to x1, twice to get to x2 , and so on.)

Therefore, the direct formula for this bank account is 500 ∙ (1.025)t , where t represents the number of years 
the money has been in the account.
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terest is called simple interest and is not how banks charge interest. When banks charge interest, interest 
is charged on the interest previously charged. This type of interest is called compound interest. Unfor-
tunately, this type of interest results in more money being owed, especially for larger amounts of money 
borrowed over a longer period of time. Fortunately, bank accounts accrue interest in the same way, so that 
more money is earned for larger amounts of money or if money is invested over a longer period of time. We 
will begin by looking at a few examples and will then generalize a formula for compound interest.

When we say that a bank account earns 2.5% interest, what we mean is that after a period of time (most 
banks calculate interest monthly or quarterly), 2.5% of the amount of money currently in the account is 
added to the account. When we are dealing with a compound interest situation, the interest previously 
earned is included the next time compounding occurs. This interest is then, in turn, included in the 
amount the next time interest is added. It seems that a recursive formula may be a good place to start.

ExamplE 2.4a: A bank account starts with $500 and earns 2.5% interest each year. Write a 

recursive formula for the amount of money in the bank account after t years.

Solution: Since the bank account has $500 to start, a0 = $500. We’ll use a0 because there is $500 after 

“0 years,” so the index will match the number of years that have passed. Since the account earns 

2.5% interest each year, we add 2.5% of the amount of money previously in the account to get to 

the next year’s amount: ai = ai−1 + (0.025)ai−1. Noticing that both of these terms contain ai−1 allows us 

to simplify this to ai = 1.025 ∙ ai−1. Therefore, our recursive formula is a0 = $500; ai  = 1.025 · ai−1.

Writing out the terms of this sequence yields a0 = $500, a1 = $512.50, a2 = $525.31, a3 = $538.45, and so 
on. Is there a direct formula for this sequence?

Yes! Since this sequence was formed by multiplying to get from one term to the next, this is a geometric 
sequence. We recall that a geometric sequence with the recursive formula x1 = a; xi = r ∙ xi−1 has the direct 
formula xk = a ∙ r k−1. However, we began our index in this case with 0 as opposed to 1, so xk = a ∙ r k. (Think 
about why this is true—now we need to multiply by r once to get to x1, twice to get to x2 , and so on.)

Therefore, the direct formula for this bank account is 500 ∙ (1.025)t , where t represents the number of years 
the money has been in the account.
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Let’s try another example and see if the same general approach applies.

ExamplE 2.4b: Frank borrows $750 from his local bank, and he is charged 3% annual inter-

est, but interest is compounded every quarter. Assuming Frank does not repay any money 

along the way, how much money will Frank owe in three years?

Solution: First we need to know one additional piece of information about how banks advertise 

and charge interest rates. Most banks advertise the annual percentage rate, or APR, of their ac-

counts and loans. Interest is compounded more frequently, most often monthly or quarterly (four 

times a year), and so the interest is divided out equally over the whole year. So, in this example, 

Frank is charged .75% interest four times per year.

At each compounding, then, the amount Frank owes is multiplied by 1.0075. Over three years, inter-

est will be compounded 12 times, so the final amount he owes is 750 ∙ (1.0075)12 = $820.36.

Is there really a difference between being charged 3% interest annually for three years and .75% quarterly 
for three years? If Frank was charged 3% interest annually for three years, he would owe 750 ∙ (1.03)3 = 
$819.55. Although the difference in this case is very small, we can imagine that over longer periods of time 
and with larger amounts of money, this difference could become much greater.

On the basis of these examples, it seems we are ready to generalize.

This direct formula is built exactly as a direct formula for a geometric sequence is built: xk = a ∙ r k−1. Recall 
that r in a geometric sequence represents the ratio that is multiplied by to get from one term to the next.

When P dollars is invested (or borrowed) in a situation using compound interest with interest rate r 

earned (or charged) at each compounding, after k compoundings, the value is P ∙ (1 + r)k . To reflect 

the way banks divide the annual interest over the entire year, this formula is sometimes written 

as P ∙           , where r represents the annual percentage interest rate, n represents the number of 

compoundings per year, and t represents the number of years.











1 + r
n

nt
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Here r represents the annual interest rate for the account, so 1 + r becomes the ratio between consecutive 
terms. This is because the bank does not take away the money in your account when you earn interest; the 
bank leaves it there and adds the interest earned by your money: ai = ai−1 + r ∙ ai−1. The idea that this can be 
rewritten algebraically as ai = ai−1 ∙ (1 + r) is crucial, so this sequence can be identified as geometric.

Let’s try two more examples to solidify our understanding of this process.

ExamplE 2.4c: Jill borrows $1,250 at 4% annual interest compounded monthly. Assuming 

she does not pay back any money in the meantime, how much money will Jill owe at the 

end of 5 years?

Solution: As Jill’s account accrues interest each month, it will compound 60 times in 5 years, and her 

4% interest will be divided into          =0.333% interest each month. Therefore, using P ∙                   results 

in 1250 ∙                  = 1526.25, so Jill will owe a total of $1,526.25 at the end of five years.











1 + r
n

nt
.04
12











1 +.04
12

60

ExamplE 2.4d: Marco invests $2,000 in a certificate of deposit (CD) that earns 3.75% interest 

compounded quarterly. When Marco goes back to the bank and collects his money in 4 

years, how much will his CD be worth?

Solution: Marco’s CD earns interest quarterly, so 4 times per year. This means his CD will have earned 

interest a total of 16 times, so 2000 ∙                       = $2,322.05. Marco will have made about $322 on

his investment.











1 + .0375
4

16

Although sometimes people invest money as Marco did in the previous example, oftentimes people do 
not have a sum of money that they are willing to put in an account or CD for 5 or 10 years. More often, 
people are willing to invest a smaller amount of money into an account at regular intervals; say, $50 or 
$100 a month. In terms of borrowing, borrowing a large amount of money to buy a car or house, wait-
ing 5 years or 30 years for all of the interest to accrue, and then suddenly having to pay back a massive 
amount of money is not feasible for most people. When we borrow money for a car or a house, we would 
like to pay back that money slowly over time, by paying a certain amount each month. In this part of the 
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Mathematics Resource Guide we will investigate these types of questions. By the end, you will understand 
the mathematical ideas and formulas behind annuities (investing money repeatedly over time) and loans 
(borrowing large amounts of money and then paying them back slowly over time).

ExamplE 2.4E: Megan invests in an annuity that earns 2.5% interest compounded monthly. 

If Megan deposits $50 per month (and does not withdraw any money from her account), 

how much money will she have after 15 years?

Solution: This problem is potentially more complicated than it looks. Megan will deposit a total 

of $50 · 12 · 15 = $9,000 into the account, but 9000 ∙                    won’t give the correct amount of 

money because not all of the $9,000 is in the account for the entire 15 years. Only the first $50 ini-

tially deposited is in the account for all 180 months, which means it is compounded 179 times. The 

$50 that is deposited in the second month is compounded 178 times, and the $50 that is deposited 

at the beginning of the third month is compounded 177 times, and so on until the last $50 that is 

not compounded at all. Therefore, the total amount of money Megan has after the fifteen years can 

be written as:

This is, of course, somewhat awkward and long, but we notice a few nice things about this sum. One 

is that it can be written in sigma form as        50 ∙                                . The second is that to move from one term 

to the next (when written in order of increasing powers as opposed to decreasing), we multiply by 

                    . Therefore, this is a geometric series!

The formula for the sum of a geometric series is S =                  , where a is the first term, r is the com-

mon ratio, and k is the number of terms. In this case, a = 50, r =                      , and k = 180, so substitut-

ing  these into the formula gives us:

         , which evaluates to $10,906.17.
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This is not bad, considering Megan invested a total of $9,000. It is not as good as it would have been had

she invested the $9,000 at the beginning, as 9000 ∙                   = $13,089.82, but we don’t all have $9,000 
that we are willing to invest for 15 years. A smaller payment on regular intervals, such as $50 a month, 
seems more reasonable.

Let’s see if we can look at the final calculation and try to determine where each part of the calculation 

came from in order to generalize to a formula. Where did each piece of         originate in 

our problem? The $50 is clearly the amount of money invested at each compounding, and the exponent of 

180 is equal to the number of months money was invested into the annuity.           is the amount of interest 

earned at each compounding, as the 2.5% per year is divided evenly over each month. Therefore, it seems 

we are ready to generalize.

50 ∙                     – 1
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.025
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12

180

.025
12

If A dollars is invested n times per year in an annuity earning r annual interest compounded n times 

per year, the value of the annuity after t years is given by the formula                         , where i is the

interest earned at each compounding, so i =    .

A ∙ [(1 + i)n•t – 1]
i

r
n

ExAmplE 2.4F: Walter invests $1,000 a year in a retirement fund that earns 5% annual inter-

est for 35 years. How much money does Walter have in his fund when he retires?

Solution: Walter is investing in an annuity, and the total value of this annuity is given by 

  . In this case A = 1000, n = 1, t = 35, and i = r = .05. Therefore, after 35 years Walter will 

have                                      = $90,320.31.

A ∙ [(1 + i)n•t – 1]
i
1000 ∙ [(1 + .05)35 – 1]

.05

Pretty good, considering Walter invested a total of $35,000—he almost tripled his money.
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ExamplE 2.4g: Barb invested some amount of money each month in an annuity earning 

3.2% annual interest compounded monthly. At the end of 20 years, Barb’s annuity was 

worth a little more than $33,500. How much money did Barb invest each month?

Solution: The unknown in this situation is the amount of money invested each month, A in our for-

mula. Since all other values are known, we are able to solve for this variable.

33500 =       . 

Evaluating the right-hand side yields: 33500 = A ∙ (335.57479), so A = 99.8287, and Barb invested

$100 per month.

A ∙                        –1











.032
12

[ 









1 + .032
12

20∙12]

Again, this is a fairly good return on Barb’s investment. She deposited a total of 100 · 12 · 20 = $24,000 

and earned almost a 40% return on her money over the life of the annuity. Certainly Barb’s investment 

would have been worth more money if she had deposited all $24,000 at the beginning and let it grow 

for the 20 years, since 24,000 ·                  = $45,476.79. But this difference is not as great as one might 

think, and most people don’t have $24,000 they can invest for 20 years.

The idea of paying small amounts of money over time is how loans work as well. Most people borrow 

money from a bank for a car, a home, or a college education. How does a bank determine the monthly 

payment for a particular loan? This is a fairly important piece of information it seems most knowledgeable 

and informed borrowers of money should know.

Let’s say you borrow some money from a bank to buy a new car, say $20,000. Since cars depreciate in 

value over time, most car loans are for 5 years. (If you aren’t able to make payments and the bank has to 

repossess the car, they want this to happen when the car still has value). If the bank did not loan you the 

money, it could have invested the money in a compound interest account at a particular interest rate for 

five years. The $20,000 the bank is loaning you is therefore worth more than $20,000 at the end of five 

years. Your monthly payment essentially goes into a five-year annuity whose goal is to equal the amount of 

money the bank could have made by investing the $20,000 in a compound interest account. The monthly 











1 + .032
12

240

mathResource.indd   63 10/15/2014   10:59:06 PM

U
SA

D
 - 

Sa
nt

a 
An

a,
 C

A
N

or
th

w
es

t P
a.

 C
ol

le
gi

at
e 

A
ca

de
m

y 
- 

E
rie

, P
A



2018–2019 Mathematics Resource Guide
63

64 USAD Mathematics Resource Guide • 2015-2016

payment is calculated so that at the end of the five years, the value of the annuity is equal to the value of 

the compound interest account. Note that this compound interest account is really a hypothetical account 

because the bank is not actually investing the $20,000 in this account; the bank is loaning it to you to buy 

a car. Let’s see how this works in an example.

ExamplE 2.4h: You borrow $20,000 to purchase a new car. Your interest rate is 6.5% annual 

interest compounded monthly, and you take out a five-year loan. What is your monthly 

payment?

Solution: To the bank, the $20,000 you borrowed will be worth 20000 ∙                     = $27,656.35 at

the end of the five years. Therefore, you need to deposit money each month into an annuity that 

will be worth this amount of money at the end of the five years. So: 

27656.35 =      , and 27656.35 = A ∙ (70.673967), so A = $391.32.











1 + .065
12

60

A ∙                        –1











.065
12

[ 









1 + .065
12

60 ]

This means you paid a total of ($391.32) · 12 · 5 = $23,479.20, so the bank made about $3,500 by loaning 
you the money. This is less than the mythical $7,600 they would make if they did not loan you the money 
and instead invested it in the (hypothetical) compound interest account. So, why would the bank loan you 
the money? One reason is that if they invest the money, they are responsible for making sure they get the 
return they are interested in—it takes work to find and maintain an investment that earns 6.5% annual 
interest compounded monthly. By loaning you the money, they do not have to do this work to maintain 
the account (assuming you make your loan payments).

Another, probably more important, reason is the fact that interest rates for loaning money are generally 
higher than interest rates for investing money. So, although the bank loans money out at 6.5% annual in-

terest, they probably are not able to invest money (consistently) at this rate. If the bank is able to invest at a 

more modest 4% interest rate, the initial $20,000 is worth 20000 ∙                     = $24,419.93, which is

extremely close in value to the $23,479.20 you end up paying the bank for the loan. Depending on the dif-
ference between the interest rates for loaning and investing, it may be more profitable for the bank to loan 
money than to invest it. Furthermore, by collecting on your loan payment, the bank is collecting money 
each month (as you pay your loan) rather than waiting five years to collect the money as they would under  
an investment.











1 + .04
12

60
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Let’s look at another example, this time for a home loan, before we generalize.

ExamplE 2.4i: Miguel borrows $175,000 at 5% annual interest compounded monthly to buy 

a house. If Miguel takes out a 30-year mortgage, what will his monthly house payment 

be?

Solution: To the bank, the $175,000 Miguel borrows will be (hypothetically) worth 175000 ∙                          = 

$781,855.25 (yikes!) after 30 years. In order to pay this off, Miguel (hypothetically) invests in an an-

nuity with 5% interest compounded monthly, and he needs this annuity to equal $781,855.25 after 

30 years. So:

781855.25 =      . Evaluating the right-hand side yields 781855.25 = A · (832.258635), 

so A = 939.4378. Miguel’s monthly mortgage payment will be $939.44.











1 +.05
12

360

A ∙                        –1











.05
12

[ 









1 + .05
12

360 ]

Over the life of the mortgage, Miguel will end up paying the bank 30 · 12 · ($939.44) = $338,198.40, well 
short of $781,855.25, which is referred to as the “future value” of his initial $175,000. But $338,198.40 is 
still significantly more than the amount of the initial loan. When a home is purchased, by law the buyer 
must be informed of the total cost of the mortgage over the life of the loan prior to closing on the house.

Based on these two examples, it seems we are ready to generalize this process.

When determining a loan payment, the future value of the money borrowed must equal the value 
of an annuity where the (hypothetical) investment and (hypothetical) annuity have the same inter-
est rate and compound with the same frequency. If P dollars is borrowed at annual interest rate r 
for t years with payments made n times per year, the following equation must hold: P ∙ (1 + i)n∙t = 
                        where A represents the monthly payment and i =   .A ∙ [(1 + i)n∙t – 1]

i
r
n
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Let’s look at another example, this time for a home loan, before we generalize.

ExamplE 2.4i: Miguel borrows $175,000 at 5% annual interest compounded monthly to buy 

a house. If Miguel takes out a 30-year mortgage, what will his monthly house payment 

be?

Solution: To the bank, the $175,000 Miguel borrows will be (hypothetically) worth 175000 ∙                          = 

$781,855.25 (yikes!) after 30 years. In order to pay this off, Miguel (hypothetically) invests in an an-

nuity with 5% interest compounded monthly, and he needs this annuity to equal $781,855.25 after 

30 years. So:

781855.25 =      . Evaluating the right-hand side yields 781855.25 = A · (832.258635), 

so A = 939.4378. Miguel’s monthly mortgage payment will be $939.44.











1 +.05
12

360

A ∙                        –1











.05
12

[ 









1 + .05
12

360 ]

Over the life of the mortgage, Miguel will end up paying the bank 30 · 12 · ($939.44) = $338,198.40, well 
short of $781,855.25, which is referred to as the “future value” of his initial $175,000. But $338,198.40 is 
still significantly more than the amount of the initial loan. When a home is purchased, by law the buyer 
must be informed of the total cost of the mortgage over the life of the loan prior to closing on the house.

Based on these two examples, it seems we are ready to generalize this process.

When determining a loan payment, the future value of the money borrowed must equal the value 
of an annuity where the (hypothetical) investment and (hypothetical) annuity have the same inter-
est rate and compound with the same frequency. If P dollars is borrowed at annual interest rate r 
for t years with payments made n times per year, the following equation must hold: P ∙ (1 + i)n∙t = 
                        where A represents the monthly payment and i =   .A ∙ [(1 + i)n∙t – 1]

i
r
n
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Although this formula can be rearranged and solved for A, the mathematical payoff for this is minimal. It 
is more efficient to remember the process of how to calculate a loan payment and use the previously estab-
lished compound interest and annuity formulas.

ExamplE 2.4j: Sarah has been renting an apartment for the last year and is ready to buy a 

house. She feels she can afford a monthly mortgage payment of $750. If current mortgage 

interest rates are 6% and she is interested in a 30-year loan, about how much money can 

Sarah expect to be able to borrow?

Solution: Substituting into the our previously determined equation yields:

P ∙        = .  Calculating reduces this equation to P · (6.022575) = 

753386.2818, so P = 125093.715. Therefore Sarah can anticipate being able to borrow about $125,000 

to purchase a house.











1 +.06
12

360 750 ∙                      –1











.06
12

[ 









1 + .06
12

360 ]

We will conclude this section of the Mathematics Resource Guide with a look at one of the most important 
numbers in mathematics: Euler’s constant, e. It is often referred to as the “natural number,” due to one 
way it is determined, but e is related to and used in many mathematical contexts. We will not look at the 
importance of e in calculus here, but instead will see if we can connect it to combinations. We will begin, 
however, with a thought experiment that brings about e.

ExamplE 2.5a: Leonard invests $1,000 in what seems like an investment opportunity that 

is too good to be true: 100% annual interest compounded monthly for 1 year. How much 

money will Leonard have when his unbelievable investment matures?

Solution: Our first inclination is to think this will be, approximately, one hundred bazillion dollars. 

Let’s see: compound interest is modeled by P ∙              , so after the 1 year, Leonard will have 1000 ∙

               , which equals…$2,613.04! Wait, what? That’s not one hundred bazillion dollars? What hap-

pened?











1 + r
n

nt











1 + 1
12

12

mathResource.indd   66 10/15/2014   10:59:08 PM

U
SA

D
 - 

Sa
nt

a 
An

a,
 C

A

2.5 EULER’S CONSTANT

N
or

th
w

es
t P

a.
 C

ol
le

gi
at

e 
A

ca
de

m
y 

- 
E

rie
, P

A



2018–2019 Mathematics Resource Guide
66 67USAD Mathematics Resource Guide • 2015-2016

ExamplE 2.5b: Leonard is still a bit puzzled about his previous investment of $1,000 at 100% 

annual interest compounded monthly. It seems like it should have been worth more mon-

ey after 1 year. This time he invests $1,000 at 100% annual interest compounded daily for 

one year. How much is this investment worth?

Solution: Okay, this time it’s going to be one hundred bazillion dollars, right? 100% annual interest 

compounded daily! That’s going to be ridiculous. 1000 ∙                = $2,714.57. What! Only $100 

more? That’s crazy! We must not be compounding enough times.











1 + 1
365

365

ExamplE 2.5c: Leonard is getting more and more perplexed. This time he invests $1,000 in 

an account earning 100% interest compounded every second for one year. This time it is 

worth one hundred bazillion dollars, right?

Solution: Unfortunately, 1000 ∙                            = $2,718.28, so Leonard makes “only” $1,718 

on his investment of $1,000. From an investment standpoint, this is a very good return. But, from a 

mathematical standpoint, it seems strange that the total value of the investment is not increasing 

very much as the compounding rate increases. Indeed, although there are differences in the values 

of 1000 ∙                                          and 1000 ∙                                    , in this investment context both 

of them result in the same amount of money: $2,718.28.











1 + 1
31536000

31536000











1 + 1
31536000

31536000











1 + 1
1000000000

1000000000
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So what exactly is going on? Let’s focus on the multiplier for the initial amount of money,               . The 

interest rate is 100%, and the money is being invested for one year, so r = 1 and t = 1. We are therefore 

primarily concerned with                 for increasing values of n. Although the exponent is getting larger, the 

number being raised to this exponent is getting smaller. This creates an interesting mathematical power 

struggle between the base and the exponent. The table below shows the approximate value of              for 

various values of n.











1 + r
n

nt











1 + 1
n

n











1 + 1
n

n

n 









1 + 1
n

n

1 2
2 2.25
3 2.37037
5 2.48832
10 2.59374

100 2.7048138
1000 2.71692393

10000 2.718145926
1 million 2.7182804693
1 billion 2.7182818271
2 billion 2.7182818277

As n increases, it appears that                does not approach infinity, but has a fixed number that it approaches. 

Mathematicians call this type of number an upper bound, and this is one way to define e: e is the number 

that               approaches when n approaches infinity.











1 + 1
n

n











1 + 1
n

n

Euler’s constant, e, is the number that               approaches as n increases to infinity. A decimal ap-
proximation of e is e ≈ 2.718281828.











1 + 1
n

n
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As this number arises from a compound interest context where n is the number of compoundings per year, 
e becomes important and useful when the number of compoundings per year equals infinity, or, in other 
words, when something is compounded continuously. Although very few (if any) bank accounts compound 
interest continually, many naturally occurring phenomena can be thought of as continuously compound-
ing. Bacteria growing in a Petri dish, for example, don’t compound on a set schedule (“All right everyone! 
Our two hours is up! Divide!), and modeling populations of different species of animals also works well if 
the population is assumed to compound continuously. Radioactive decay is another example of continu-
ous compounding. Because e is used to model many of these naturally occurring activities, it is sometimes 
called the natural number.

But, so far all we can do is use e to model situations with 100% growth (interest) rate and continuous com-
pounding. What if we want or need to use a growth rate other than 100%? How does this relate to e?

From our work with compound interest, we know that for any interest rate the multiplier will be             .

But, all we know is that             approaches e as n approaches infinity. How can we turn             into 

something like             ? 

First we need to recognize that in the second expression, n can act as a placeholder, and anything of the 

form              will equal e as x approaches infinity. This means we can substitute anything we like in for x, 

and it will still equal e as x approaches infinity. Needing      inside the parentheses, we notice that           =     , 

and so we substitute     in for x. This gives us e = lim               , or e = lim           . Now the inside of  

the parentheses is what we need, which is good! We were trying to build the expression for compound 

interest,            . Raising both sides of this equation to the r power will give us what we need, and so 

er = lim           . This equation says that the multiplier for continuous compounding at interest rate r is er. 

Often when we solve problems using continuous compounding, we will not know what the specific growth 
rate is, (“Excuse me, Mr. Bacteria, can you tell me the growth rate at which you are compounding? 6.4%? 
Great, thanks!) and will treat er as one number representing the multiplier. If the reader is familiar with 
logarithms, this equation contains extra mathematical significance.











1 + 1
n

n











1 + r
n

n











1 + 1
n

n











1 + r
n

n











1 + 1
x

x

r
n

r
nn

r









 1

n
r

n
r









 1











1 +

n

r

n–>∞ n–>∞











1 + r
n

n

r











1 + r
n

n











1 + r
n

n

n–>∞
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This development is also significant in that it is the first time in this year’s Mathematics Resource Guide that 
we have been able to use the structure of mathematics itself to answer a question about how to represent 
something mathematically. Previously, we looked at a situation, reasoned about some calculations, and 
then generalized to produce a formula or method. Here, however, it is extremely difficult to generalize 

from calculations that er = lim               , and instead we used mathematics directly to construct this formula. 

This formula, then, communicates some new knowledge about the physical world that we could not have 
known without mathematics.

Let’s see how we might use this in a problem.











1 + r
n

n

n–>∞

ExamplE 2.5d: 100 bacteria are placed in a Petri dish, and after three hours there are 185 

bacteria. Assuming a continuous growth model, how many bacteria will there be in seven 

hours?

Solution: First we need to construct a model for this situation. The bacteria are growing with 

some growth rate r, so the number of bacteria can be approximated by lim P ∙            . Since 

er = lim            , this expression becomes P ∙ ert , which hopefully looks familiar to those who have

taken enough science classes. This expression equals 185 when t = 3, so 185 = 100 ∙ e3r or 1.85 = e3r.

We then take the cube root of each side to obtain 1.227601= er . If we have an understanding of 

logarithms, it is possible to solve for r, but that is not necessary to answer this question. We want to 

know how many bacteria there will be after seven hours, which is given by the expression 100 ∙ e7r.

This can be rewritten as 100 ∙ (e r)7 , and as e r = 1.227601, this expression evaluates as 100 ∙ (1.227601)7

= 420.14645. Therefore, after seven hours there will be about 420 bacteria.











1 + r
n

n

n–>∞











1 + r
n

nt

n–>∞

We will conclude this section with a look at how e potentially relates to combinations, a key topic we 
explored in Section 1 of this resource guide. There are two major mathematical ways to represent e, and 

we started with one of them: e = lim            . We will use this representation to derive the other major 

representation of e. To get there, we will use the Binomial Expansion Theorem.

We will start by considering             . Once isolated, we notice that this is a binomial raised to a power. 

The Binomial Expansion Theorem therefore applies, and we will substitute y = 1 and x =      . (Since these 
terms are added, we can consider them in either order, and this substitution makes the powers work out a 
bit more nicely.) Formally, the Binomial Expansion Theorem says:











1 + 1
n

n

n–>∞











1 + 1
n

n

1
n
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 (x + y)n =         ∙ x k ∙ y n–k

Substituting y = 1 and x =    gives us:             =         ∙        ∙ 1n–k.

Simplifying the right-hand side and rewriting the left-hand side yields:

             =          ∙

This sigma expression is somewhat difficult to follow, so let’s write out a few terms.

When k = 0,      ∙      equals       ∙      , so the first term is 1.

When k = 1,       ∙      equals       ∙      = n ∙     , so the second term is also 1.

When k = 2,      ∙      equals       ∙      =               ∙     , so the third term is      ∙               .

When k = 3,      ∙      equals       ∙      =                        ∙     , so the fourth term is      ∙                         .

When k = k,       ∙      equals       ∙      =                                             ∙      , so the (k + 1)th term is

          ∙            ∙                                   .

These terms are all pretty ugly, but there is one important thing we have not yet done to               , which 

is where all this started. e = lim            , so let’s consider what happens to each of these terms as n ap-

proaches infinity.

The first and second terms are 1, so as n approaches infinity, they still equal 1.

The third term is     ∙              , so as n approaches infinity, this term equals     .

The fourth term equals     ∙                         , so as n approaches infinity, this term equals     .

The (k + 1)th term equals                                                      , so as n approaches infinity, this term equals

Therefore, we can simplify all of this fairly drastically when we consider n approaching infinity.
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So, we have reached a new way to write e: e = 1 + 1 +     +     + . . . +     =+ . . .

Since 0! = 1, 1! = 1, and 2! = 2, we can write all of the denominators in this series as factorials:

e =     +     +     +     + . . . +     + . . .

This makes it possible to write the series definition of e: e =         .

Here we have a powerful example of mathematics generating more mathematics. In Euler’s time, (he lived 

during the 1700s), approximating e using                   would have been almost impossible, as n = 1000 only 

generates two decimal points of accuracy. Since k! decreases so rapidly, using         gives us much greater
accuracy with far fewer terms and calculations that are possible to do by hand! Using k = 6, for example, 
gives us three decimal places of accuracy, and k = 10 gives us an approximation of e that is accurate to 7 
digits!

Euler’s constant is one of the most important numbers and mathematical concepts in the historical and 
intellectual development of mathematics. It helped bridge the gap between algebra and calculus and serves 
as an important cornerstone in mathematics.

We hope the reader has gained a greater appreciation of algebra as a branch of serious mathematical 
study—it is not just a collection of strange problems about solving equations or factoring. Algebra is much 
broader and more powerful than this and serves as the foundation for higher mathematics.

L  Definition of a Sequence: A sequence is a list of objects presented in a particular order. The objects 
in the sequence are called the terms of the sequence.

L  Notation for the Terms of Sequences: The position of a term in a sequence is called the index of the 
term. The terms of a sequence are denoted by a variable (usually a or x) and an index, with the index 
written as a subscript. Unless otherwise noted, the index begins at 1 and consists of positive counting 
numbers. A generic sequence will commonly be written as x1, x2, x3… or a1, a2, a3 … .

L  Notation for Sequences: When the terms of a sequence can be generated from a direct formula, we 
can represent the sequence by giving the direct formula in curly brackets, such as {xi = 4i −1}. For a 
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sequence with a particular number of terms, we denote the starting index as a subscript and the end-
ing index as a superscript, such as {xi = 4i −1}i=1 .

L  Recursive Formula: A recursive formula for a sequence is a formula that declares the starting value 
(or values) for the sequence and how the subsequent terms are made from the previous term (or terms). 
For example, a1 = 5; ai = 2 ∙ ai−1 + 3.

L  Direct Formula: A direct formula for a sequence is a formula that declares how to generate the terms 
of the sequence from the values of the index. For example, {xi = i 2}.

L  Arithmetic Sequences: An arithmetic sequence is a sequence with a constant difference between 
consecutive terms. The first term of an arithmetic sequence is usually represented by a, and the con-
stant difference is represented by d.

L  Formulas for Arithmetic Sequences: The recursive formula for an arithmetic sequence is x1 = a;  
xi = xi−1 + d. The direct formula for an arithmetic sequence is xk = a + (k −1) ∙ d.

L  Geometric Sequences: A geometric sequence is a sequence with a constant ratio between consecutive 
terms. The first term for a geometric sequence is usually represented by a, and the constant ratio is 
represented by r.

L  Formulas for Geometric Sequences: The recursive formula for a geometric sequence is x1 = a; xi = r 
∙ xi−1. The direct formula for a geometric sequence is xk = a ∙ r k−1.

L  Definition of a Series: A series is the sum of the terms in a sequence.

L  Formula and Strategy for Arithmetic Series: To find an arithmetic series, we create paired sums 
equal to the first term plus the last term. If there are k terms, there will be     pairs, so the arithmetic 
series will be (x1 + xk ) ∙     . As x1 = a and xk = a + (k −1) ∙ d, this formula can be written using the first 
term and the constant difference as [2a + (k −1) ∙ d] ∙     .

L  Formula and Strategy for Geometric Series: To find a geometric series, we call the series we are 
looking for S, add an additional term to S, and then algebraically manipulate. A geometric series with 

k terms and r ≠ 1 is equal to S =            . Alternatively, we can write this formula by referencing the 

terms in the sequence: S =             , where xk is the last term in the series and xk+1 is the next term in 
the sequence (but is not included in the series).

L  Formula for Infinite Geometric Series: An infinite geometric series equals a finite number if xk ≈ 0 
for sufficiently large values of k (or, equivalently, |r| < 1). In this case, S =            .

25

k
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k
2

a ∙ rk – a
r – 1

xk+1 – x1
r – 1

a
1 – r

k
2
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L Sigma Notation: Mathematicians use sigma, ∑, to denote a series.           means the series that cor-
responds to the sequence generated by the formula f (i)where the index begins at a and ends at b. For ex-
ample,         = 1 + 4 + 9 + 16 + 25.

L  Sigma Forms of Arithmetic and Geometric Series Formulas:

J Arithmetic Series:      (a + (i – 1) ∙ d) = [2a + (k – 1) ∙ d] ∙     .

J Finite Geometric Series:      (a ∙ r i–1) =             .

J  Infinite Geometric Series:         (a ∙ r i–1) =         , when |r| < 1.

L  Definition of a Polynomial: A polynomial is an algebraic object consisting of terms. Each term is 
made up of a variable, usually x, raised to a different non-negative integer power and a coefficient. The 
highest power of x with a non-zero coefficient is called the degree of the polynomial.

L  Sigma Representation of a Polynomial: A polynomial of degree k can be written in sigma form as 

            .

L  Adding and Subtracting Polynomials: When polynomials are added or subtracted, the coefficients 
of the terms with the same power of the variable are added or subtracted.

L  Multiplying Polynomials: When polynomials are multiplied, one term from each polynomial in the 
product is selected. Each new term has its power equal to the sum of the powers of the old terms, and 
its coefficient equal to the product of the old coefficients.

L  The Binomial Expansion Theorem: When expanding a binomial in the form (x + y)n , each term in 

this expansion is of the form        ∙ x k ∙ y n–k. Therefore, (x + y)n =                        .

L  Compound Interest: Compound interest occurs when the interest earned at each compounding is 
included in the calculation of interest at the subsequent compoundings. In other words, interest is 
earned on interest. Compound interest is a geometric sequence.

L  Compound Interest Formula: When P dollars is invested (or borrowed) in a situation using com-
pound interest with interest rate r earned (or charged) at each compounding, after k compoundings 
the value is P ∙ (1+ r)k . To reflect the way banks divide the annual interest over the entire year, this 

formula is sometimes written as P ∙               , where r represents the annual percentage interest rate, 

n represents the number of compoundings per year, and t represents the number of years.

b
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L  Annuities: An annuity is an account where money is repeatedly invested at regular intervals—for 
example, $50 per month. Annuities are geometric series.

L  Annuity Formula: If A dollars is invested n times per year in an annuity earning r annual inter-
est compounded n times per year, the value of the annuity after t years is given by the formula  

                    , where i is the interest earned at each compounding, so i =     . 

L  Process for Determining a Loan Payment: When determining a loan payment, the future value of 
the money borrowed must equal the value of an annuity, where the (hypothetical) investment and the 
(hypothetical) annuity have the same interest rate and compound with the same frequency. If P dollars 
is borrowed at an annual interest rate r for t years with payments made n times per year, the follow-

ing equation must hold: P ∙ (1 + i)n∙t =                        , where A represents the monthly payment and 

i =     .

L  Euler’s Constant: Euler’s constant is often used to model situations with continuous compounding.  

e has two major mathematical definitions: e =                   and e =          . A decimal approximation of 

e is e ≈ 2.718281828.

L  Modeling Continuous Compounding: To model a situation with continuous growth (or decay), we 
use the expression P ∙ e rt , where P represents the initial amount, r represents the rate of growth (or 
decay), and t represents the number of years that have passed.

1. Consider the following series: 41 + 43 + 45 + … + 1203 + 1205 + 1207.

a. Write the sequence that corresponds to this series as a direct formula.

b. Write the sequence that corresponds to this series as a recursive formula.

c. Is this series arithmetic, geometric, or neither? Explain.

d. Determine the number of terms in this series.

e. Write this series in sigma notation.

f. Find the value of this series.

2. Consider the following series: 2 –      +     – . . . +                           –                           

A . [(1 + i)n∙t – 1]
i

r
n

A ∙ [(1 + i)n∙t – 1]
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a. Write the sequence that corresponds to this series as a direct formula.

b. Write the sequence that corresponds to this series as a recursive formula.

c. Is this series arithmetic, geometric, or neither? Explain.

d. Determine the number of terms in this series.

e. Write this series in sigma notation.

f. Find the value of this series.

g. Find the value of this series if it had an infinite number of terms.

3. Consider the series 1 + 4 + 9 + 16 + 25 + 36 + 49 + … + 225 + 256.

a. Write the sequence that corresponds to this series as a direct formula.

b. Write the sequence that corresponds to this series as a recursive formula.

c. Is this series arithmetic, geometric, or neither? Explain.

d. Determine the number of terms in this series.

e. Write this series in sigma notation.

f.  Create a new sequence such that the first term is the first term of the series above, the second
term is the sum of the first two terms of the series, and in general the kth term is the sum of the
first k terms in the series.

g.  Describe this new sequence in words and write the kth term of this sequence using sigma nota-
tion.

h. Write a direct formula for this sequence.

4.  Two employees in a grocery store are trying to figure out how to make a display using 140 cans of
soup. They need to make a trapezoidal display so that each row has two fewer cans than the row below
it. They have room for a total of 10 rows of cans before the display becomes unstable. How many cans
should they place in the bottom row of the display?

5.  A bouncy ball is dropped from a height of 24 feet. Each time the ball bounces, it returns to a height
that is      the previous height.2

3
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a. What height does the ball return to after the first bounce?

b. What height does the ball return to after the fourth bounce?

c. What is the total distance the ball travels?

6.  The polynomial 11x7 − 6x6 + 2x4 − x3 + 16x + 15 could be used to represent two different sequences.
Write each of them.

7.  Multiply the following polynomials: (x2 + 4x + 5) ∙ (2x − 3) ∙ (4x3 + 2x −1). Do not use a calculator.

8. What is the coefficient of x5 in the expansion of (3x + 2)7?

9. What is the coefficient of y6 in the expansion of (y2 − 5)7 ?

10.  Prove that      –      +      – . . . ±           . . .      = 0. (Note that whether n is even or odd will determine 

the signs (+/–) of the last two terms.)

11.  Sophie invested $4,000 in an account earning compound interest compounded monthly. After 4
years, her account was worth $5,750. What was Sophie’s interest rate?

12.  Peter deposits $1,500 per year in a retirement account that earns 4.5% annual interest. After 40 years,
how much money will be in Peter’s account?

13.  When Rachel is born, her parents begin investing money each month into an annuity for her college
education that earns 4% annual interest. If Rachel’s parents want to have $120,000 when Rachel turns
20 years old, how much should her parents invest each month?

14.  Juan borrows $200,000 to purchase a house at 6.6% annual interest.

a. What is Juan’s monthly mortgage payment, given that Juan takes out a 30-year mortgage?

b.  Over the course of his mortgage, how much will Juan pay in mortgage payments to repay the
loan?

15.  Scientists have discovered a rare isotope of carbon, Carbon-14. An initial sample of 5.4 grams of Car-
bon-14 decays to 3.1 grams after 50 years. How much of this sample of Carbon-14 do scientists predict
will remain after 130 years?
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Section 3

Compared to the larger field of mathematics, statistics is a very young field, having only been 
around for the last two hundred years or so. With an increase in scientific experimentation, 
people were in need of mathematics that would help them determine whether their results were 

caused by random chance or if their experiment allowed them to conclude something else was going on. 
The mathematics of probability (including permutations and combinations) had advanced to a point where 
it could be used to help answer such questions. This blend of necessity and available mathematics sparked 
the formulation of the field of statistics.

By its nature, statistics can be murky and ill defined. Broadly speaking, statistics uses mathematics to gen-
erate numerical measures that allow for decision making. These measures are constructed or conjectured 
by statisticians and are then tested to determine if they accurately measure what they were designed to 
measure. These measures may be refined to better reflect what the statistician had in mind.

Sometimes this constructive nature of the discipline causes people to be skeptical of statisticians, or believe 
they are deliberately manipulating data in order to fool the general public. Although statistics can be used 
in a misleading way, statisticians themselves are not trying to trick anyone. Assembling large amounts of 
data and describing them in a more useful, portable way is a difficult task, and statisticians haven’t been 
doing it for that long. Statisticians have made a remarkable amount of progress, given the amount of time  
spent thus far. Two hundred years may seem like a long time to us, but compared to the five thousand or 
so years for which mathematics has been developing, statistics is very much the newcomer to the party.

Despite its youth, statistics has already grown enough that to discuss the entire field would take much 
more space than we have in this section of the Mathematics Resource Guide. As usual, our goal here is not 
to have the reader learn all there is to know about statistics, but to begin from a place typically studied 
in high school mathematics and end a bit beyond high school mathematics, with the hopes of making an 
undergraduate course in statistics more accessible to the reader.
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One aspect of statistics is an effort to communicate quickly and effectively about potentially large sets of 
data. We need to do something to describe a large data set to someone besides showing him or her all 1000  
pieces of data and saying, “Look!” It seems there are two important ideas about the data set we would like  
to communicate. The first idea is what a typical value in this data set is, and the second is how spread out 
the values in this data set are. Together, these measures attempt to describe a set of data without listing 
every data point—hence the name descriptive statistics.

We will begin with the measures most commonly introduced in high school (or even middle school) 
mathematics: mean, median, and mode. Although we assume the reader has some familiarity with these  
measures, the rationale behind these measures and an understanding of why all three are used is not as 
commonly studied in high school mathematics. We hope the reader will gain an appreciation of all three 
measures and a deeper understanding of why multiple measures of a “typical” data value are necessary.

Let’s consider an example. A small company has twenty employees. The annual salary of each employee is 
listed below in thousands of dollars, sorted from highest to lowest. What does a typical employee of this 
company earn per year?

How do we describe what a typical employee in this company earns? This depends, of course, on our defi-
nition of typical. There are several ways to answer this question. One way is to pretend that every employee 
in the company makes the same amount of money. To do this, we would find the sum of all the salaries and 
then divide by the number of employees. Finding the sum of all the employees is easy enough to do, but 
notionally we would like to do something besides write out 25 + 28 + 31 + … + 65 + 175. The similarity to a 
series is hopefully clear: if we pretend the salaries are a sequence, where x1 is the salary of the first employee 
($25,000), x2 is the salary of the second employee ($28,000), and so on, we can quickly represent the series 

as         which equals $1,000,000. If every employee made the same amount of money, this $1,000,000 

would be evenly distributed over all 20 salaries, and therefore each employee would make $50,000. This 
value is referred to as the mean of the data set.

SALARIES (IN ThOUSANDS OF DOLLARS)
$25 $35 $40 $50 $58
$28 $36 $42 $53 $62
$31 $36 $44 $54 $65
$32 $36 $45 $55 $173

20

i=1
∑ xi
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The mean of a data set is the value each data point would have if all data points were equal. To find 
the mean, we sum the data values and then divide by the number of data points in our set.

Therefore, the mean of a set consisting of n values is given by           , where xi represents the ith data 
value. The mean of a set of data is represented by x or sometimes the Greek letter μ (pronounced 
“mu”).

n

i=1
∑ xi

n

Why might the mean not be a good representation of a “typical” data value? Comparing the mean salary 

of $50,000 to the actual distribution of salaries given in our example should make us question whether 

a typical employee makes $50,000. Although the mean salary is $50,000, the majority of the employees 

make less than this amount. Even if we think about the mean as the “center” of the data, this set of salaries 

is not centered on $50,000. For example, if we consider the values within $10,000 of $50,000, there are an 

equal number of values between $40,000 and $50,000 as there are between $50,000 and $60,000 within 

this interval, but far more values lie below $40,000 (8) than above $60,000 (3).

What is it about these data that causes the mean to be a potentially inaccurate measure of a typical data 

value? We note that the largest salary, $173,000, is significantly larger than all other data values in the 

set. This type of data point, called an outlier, is a value that is significantly different from the rest of the 

data set. There is some discussion about how to precisely determine what is considered an outlier, and we 

will discuss the most generally accepted method later on in this section. Under almost any definition or 

mathematical procedure to determine an outlier, the salary of $173,000, being almost three times the next 

closest salary, is considered an outlier.

Why does the outlier impact the mean? Since the mean is based on the sum of all of the data, an outlier 

will contribute much more to this total than a data point closer to the overall group. The larger the data 

set, the smaller this impact will be (since the sum is divided by the number of data points), but this can 

still significantly alter the mean of the data. For example, if the $173,000 salary is removed from the data 

above, the mean becomes $43,526. This new mean has almost the same number of values above it as below, 

and it is more centered within the data.
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This idea of being centered in the data leads to another idea for measuring a typical data value. Report-
ing the middle data value allows for a measure that is not affected by the presence of outliers. Because the 
middle number does not depend on the values of the data points, but only how many data points there 
are, it does not matter if the highest salary is $65,000 or $173,000 or even $1,000,000. This measure of a 
typical data value is called the median. If the data set contains an odd number of values, the median is the 
value in the middle of the data. If the data set contains an even number of values, the median is the mean 
of the two values in the middle.

The median of a set of data is the value with the same number of data points above as below the 
value. If the data set has  values and n is odd, then the median is x   . If the data set has n values

and n is even, the median is the mean of the two data values at the middle of the data:           .
n+1
2 x + x

2
n
2

n
2

+1

In order to properly find the median of a data set, the data must be organized from smallest to largest 
value. The median of the salary data given in our example is $43,000.

The median is often used together with the mean to give information about the distribution of values in 
the set of data. Since the median is always in the exact middle of the data set, if the mean is close to the 
median, then the data are fairly evenly distributed on both sides of the median. If the mean is higher than 
the median, then the data are skewed above the median because the mean is being increased by values 
larger than the median. If the mean is less than the median, then the data are skewed below the median, 
as the mean is being decreased by values smaller than the median.

There is one more possible interpretation of what it means to be a typical data value: the data value that 
occurs most often. Although this value is not generally reported alone as the only representation of the 
typical data value, it is a typical value in the sense that if a value is selected at random, it is the value most  
likely to be selected. This value is called the mode.

The mode of a data set is the value that occurs most frequently
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If each value in the data set occurs once, the data have no mode. If two different data values each occur 

most frequently, they are both considered the mode, and the data set is called bimodal. The mode of the 

salary data in our example is $36,000.

The mean, median, and mode are the three measures of central tendency generally used in statistics. They 

all attempt to capture and report what a typical data value is for the data in question. Each of these mea-

sures reports something slightly different about the data, and so they are often reported together to give a 

more complete picture of the data.

ExamplE 3.1a: Jill would like to average 85 out of 100 on her five science tests. She has al-

ready taken the first three tests and scored 89, 91, and 78. What does Jill need to average 

on her last two tests in order to have an overall average of 85?

Solution: In order to average an 85 over five tests, Jill needs to earn a total of 85 · 5 = 425. Thus far 

she has earned a total of 89 + 91 + 78 = 258, so she needs to total 167 on her last two tests. This 

means she needs to average 167 / 2 = 83.5 on her last two tests in order to have an overall average 

of 85.

ExamplE 3.1b: The median of the data set consisting of 3, 14, 20, 52, and x is x. What is the 

value of x?

Solution: The best way to approach this problem is to think about the possible ways the data could 

be arranged. In order to find the median, the data need to be arranged in order from lowest to high-

est value. Therefore, if x is less than 3, the data would read: x, 3, 14, 20, 52.

In this case, the median would be 14, but x was assumed to be less than 3 in this scenario, so this 

situation is impossible. A similar argument shows that if x was larger than 52, the median would be 

20, but since x cannot simultaneously be 20 and greater than 52, this is also impossible.
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What if x were between 3 and 52? In that case, the data could look like one of the three following 

scenarios:

Scenario I: 3, x, 14, 20, 52

Scenario II : 3, 14, x, 20, 52

Scenario II : 3, 14, 20, x, 52

Under Scenario I, the median of the data set is 14. Therefore, if x = 14, the median would equal the 

value of x. Under Scenario II , the median of the data set is x. Therefore, if x is any number between 

14 and 20, the median would equal the value of x. Under Scenario III , the median of the data set is 

20. Therefore, if x = 20, the median would equal the value of x. So, x could be 14, 15, 16, 17, 18, 19,

or 20.

ExamplE 3.1c: Describe all possible data sets with more than one data point that have the 

same value for the mean, median, and mode.

Solution: Before describing all such possible sets, first we need to convince ourselves that such a 

set exists. Once we believe this is possible, then we can think up a few more and start to describe 

what all such sets look like.

Why must the data set have more than one data point? Let’s suppose our data set consists of a 

single value; say, 4. The mean of this data set is 4, the median is 4, and the mode is 4. So this data set 

would  have the same mean, median, and mode. Certainly there is nothing special about the choice 

of 4, so any data set with a single data point will have the same mean, median, and mode. This is 

sort of interesting, but not very realistic. The main purpose of descriptive statistics is to quickly com-

municate information about a data set instead of listing all the data points. If there is only one data 

point, communicating the entirety of the data isn’t too difficult.

So, what if our set had two data points? In this case, the mean and the median are always the same 

since by definition the median of a data set with an even number of values is the mean of the middle 

two numbers. However, if the two data points were different, there would be no mode. Therefore, 
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in order for the mean, median, and mode to be the same, both data points must be the same value. 

That isn’t all that interesting, but neither is a set with only two data points.

What if our data set had three data points? The median of three values will automatically be the 

middle value. How can the mean equal this middle value? The mean is the sum of all the values 

divided by three, so the sum of the values must be three times the median. For this to occur, all 

three values need to be the same, or the other two values must differ from the median by the same 

amount. This way, the total sum will still equal three times the median. For example, the data set 21, 

25, 29 has a median of 25 and a sum of 75, which gives us a mean of 25.

So, if the three data values are evenly spaced about the center value, the mean will equal the me-

dian. But, this implies the three data values are different, so therefore there is no mode! This means 

the only way to make a data set with three values with mean, median, and mode equal is to have 

three identical data values. Again, this is not a very interesting data set.

But, with four data points something interesting starts to occur. The set 21, 25, 29 has a mean and a 

median of 25, so if we want to make the mode 25, we can add another value of 25 to the data set. 

The set 21, 25, 25, 29 has mean, median, and mode equal to 25. Can we continue adding values but 

maintain a mean, median, and mode of 25? Certainly we can add as many 25’s as we want, but this 

will become boring after a while. Let’s think about the possibilities for 9 data points. Other than a 

data set consisting of nine values of 25, what else can we construct with mean, median, and mode 

of 25?

In order to have a median of 25 with nine values, the middle value must be 25. We also want the 

mode to be 25, so we need to have at least one more 25. With two values of 25, however, there will 

be an unequal number of data values above the median as below, say four values greater than 25 

and three less than 25. Although we can pick values such that the mean will still be 25 with this im-

balance, it is much easier if there are the same number of values above the median as below. There-

fore, we would prefer three values of 25, so we can have three values below 25 and three above.

To have a mean of 25 requires that the data sum to 9 · 25 = 225, and with three values already fixed 

at 25, this means the remaining values must sum to 150. The three values larger than 25 can sum to 
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whatever value we wish, as they can be as large as possible, but the three values less than 25 must 

sum to at least 1. (If all three values were 0, then 25 would not be the only mode.) So again we are 

faced with a large number of possibilities, but if we select nice possibilities, something interesting 

begins to happen.

Based on our smaller example with four data values, we start with the data set 21, 23, 25, 25, 25, 27, 

29. This has a median and mode of 25, and a quick check verifies that the mean is also 25. This data

set only has seven values, however, so we need to add two more data values. If both of these values 

were placed on the same side of 25, either both above or both below, this would cause the mean 

to move away from 25. Therefore, these two additional data points must be placed evenly around 

25, as was done when there were only three data points. As long as these two data values sum to 

50, they can be placed anywhere, but it seems nicer if they are placed with our original data, as in: 

21, 23, 23, 25, 25, 25, 27, 27, 29.

So, although we may lack technical statistical knowledge to specifically describe data sets where 

the mean, median, and mode are all equal, we can say that these types of data sets seem to have 

some form of symmetry. In order to have equal mean and median, values need to be evenly spaced 

about the median, and for the mode to be the same value, there needs to be a spike at the center 

of the data.

Although there are several different important statistical distribution patterns, the Normal Distribution 

has this general shape and the important characteristic that the mean, median, and mode are all equal. We 

will study the Normal Distribution at the end of this resource guide.

Our experience with constructing data sets where the mean is equal to the median has introduced us 

to another interesting idea: what is the mean and median of a finite arithmetic sequence? Based on our 

preliminary work in the previous example, it seems that the mean and median of an arithmetic sequence 

will be equal since the values will be evenly distributed above and below the mean. Let’s look at one more 

example to see if this idea is correct.
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ExamplE 3.1d: Consider the following data: 3, 7, 11, 15, 19, 23, 27, 31, 35. What are the mean 

and median of these data?

Solution: As these values are already arranged in increasing order, it is straightforward to read the 

median as 19. Is the mean of these data also 19? We know from prior work in this resource guide 

that to find an arithmetic series, we create pairs with a constant sum. In this case, the paired sum is 

38, so the sum of the terms will be            , which is 19 · 9. Since there are 9 terms, we divide by 9 to 

find the mean, and the mean is indeed 19 as we wanted.

Is this always true? A generic arithmetic sequence with n terms, first term of a and constant differ-

ence of d will sum to                                     , which means the average will be                                     .

This simplifies to                            or a +            ∙ d.

We would like this value to be the median of our arithmetic sequence as well, so it needs to be posi-

tioned in exactly the middle of the data. We recall that the direct formula for an arithmetic sequence 

is xk = a + (k −1) ∙ d since to get from the first term to the kth term requires adding the difference

k – 1 times. The index for our arithmetic sequence is running from 1 to n, which means the index for 

the median needs to be            . (Think through a few examples to convince yourself of this!) But this 

is the index, not the value of the term in our sequence. So what is x    = ? Substituting           for k in 

xk = a + (k −1) ∙ d yields x     = a +                    ∙ d, which simplifies to a +            ∙ d, or a +          ∙ d

as desired. Therefore, the mean and the median of a finite arithmetic sequence are always equal.

This can make it somewhat easier to answer our previous question about data sets where the mean, median, 
and mode are all equal. Provided we begin with an arithmetic sequence, we can then add extra data points 
matching the median, so the mode is the same as the mean and the median. Additional values can then be 
added without disturbing the mean or median as long as they are added symmetrically about the desired 
median.

The mean, median, and mode all give information about a typical or representative data value and attempt 
to communicate information about the center of the data. In describing a data set, we are also interested in 
how the data are spread out. Therefore, we will now turn our attention to measures that try to communi-
cate information about the distribution of the data.

38 ∙ 9
2

[a + a + (n – 1) ∙ d] ∙ n
2

[a + a + (n – 1) ∙ d] ∙ n
2n

[2a + (n – 1) ∙ d]
2

(n – 1)
2

n + 1
2

n+1
2











–1n + 1
2

n + 1
2

n + 1
2











n – 1
2

(n – 1)
2
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As our extended thought experiment regarding data sets with equal mean, median, and mode hopefully 

showed us, data sets that are very different may have the same mean, median, and mode. For example, 

consider the two data sets below:

Set 1: 0, 0, 1, 3, 8, 9, 12, 18, 20, 20, 20, 22, 26, 27, 30, 31, 32, 42, 59

Set 2: 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 23, 24, 24, 26

Both of these data sets have the same number of values (19), and the mean, median, and mode of each data 

set is 20. Reporting only these values to describe the data sets therefore gives the impression that these two 

sets are very similar. Clearly these data sets are drastically different, but how can we describe this differ-

ence and how do we capture this difference mathematically?

What makes these data sets different from each other is the spread of the values: the first data set is very 

spread out, while the second data set is clumped fairly close together. In the next section, we will develop a 

single value that attempts to describe the amount of spread present in a set of data. First, however, we will 

approach this problem in a more straightforward manner.

The simplest measurement of how the data are spread out is to report the difference between the highest 

and lowest data value. For Set 1, there is a difference of 59 between the highest and lowest data value; for 

Set 2, this difference is only 11. This measure of the difference between the highest data value and lowest 

data value is called the range.

The range of a set of data is the difference between the largest and smallest value in the data set.

The range gives a very rough guideline for the spread of the data. A small range means the data are 

grouped relatively close together, and a large range means the data could be spread out. Using the range 

as the only measure of the spread of the data has several problems, however. The first is that the range is 

easily affected by the presence of outliers since it finds the difference between the most extreme values, and 

these data points could be outliers. This might give the impression that the data are very spread out when 

in fact the majority of them are not.
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For instance, the range of the following data: 14, 15, 15, 15, 16, 17, 18, 18, 19, 20, 20, 52 is 38, which gives 
the appearance of a disparate and spread out data set. As can be seen from the values, however, the outlier 
of 52 is masking the true spread of the data. This sensitivity to outliers is one weakness of the range, as it 
will occasionally over-report the spread of the data.

The other potential issue of the range is that in order to be properly interpreted, it needs to be reported 
with the mean. Since the range measures the raw difference between the maximum and minimum data 
value, this difference can indicate a larger or smaller spread depending on the values of the data. A range 
of 50 with a mean of 1000 looks very different from a range of 50 with a mean of 25. (Is it possible to have 
a data set with a mean of 25 and a range of 50?) Therefore, we turn our attention to another measure of 
the spread of the data: quartiles.

Let’s consider again the two data sets from our earlier discussion:

Set 1: 0, 0, 1, 3, 8, 9, 12, 18, 20, 20, 20, 22, 26, 27, 30, 31, 32, 42, 59

Set 2: 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 23, 24, 24, 26

What makes data Set 1 and Set 2 different from each other is the spread of the data. Although the median 
of each data set is 20, the values in Set 1 are much more spread out than the values in Set 2. If we picture 
the median dividing each data set in half, the values in the lower half of Set 1 are generally much less than 
the values in the lower half of Set 2. Similarly, the values above the median in Set 1 are generally much 
higher than the values above the median in Set 2. To capture this difference, we could report the median of 
the values below the median for Set 1 and Set 2. This could show that although the medians are the same, 
the values below the median are lower in Set 1 than in Set 2, demonstrating a greater spread of data. The 
median of the values above the median could also be reported for both sets, and again we would anticipate 
a higher median from the values above the median for Set 1 than Set 2. Let’s see how this would work 
with the actual data.

The values below the median for Set 1 are: 0, 0, 1, 3, 8, 9, 12, 18, 20. The 20 is included here because the 
middle 20 in Set 1 is the median. The median of these values is 8.

The values below the median for Set 2 are: 15, 15, 16, 17, 17, 18, 18, 19, 20. The median of these values is 
17.

Calling this measure “the median of the values below the median” is awkward, so for now we will call this 
the lower median. The fact that the medians of Set 1 and Set 2 are equal, but the lower median for Set 1 
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is 8 while the lower median for Set 2 is 17 tells us that the values in Set 2 are much closer to the median 

than Set 1. At least, it tells us this is true below the median. What about above the median?

The values above the median for Set 1 are: 20, 22, 26, 27, 30, 31, 32, 42, 59. The median of these values 

is 30.

The values above the median for Set 2 are: 20, 21, 22, 22, 23, 23, 24, 24, 26. The median of these values 

is 23.

As we predicted, the fact that the values in Set 1 are much more spread out than the values in Set 2 is 

reflected in the so-called upper median as well. An upper median of 30 for Set 1 compared to an upper 

median of 23 for Set 2 tells us that the values in Set 1 are much more spread out than the values in Set 2.

What do these three numbers (the lower median, the median, and the upper median) tell us about the 

data? For Set 1, these numbers are 8, 20, 30. The median finds the middle value in the data, so this means 

50% of the data are below 20, and 50% of the data are above 20. Since the lower median is the median of 

the values below the median, this means 25% of the original data are below 8, and 25% are between 8 and 

20. Similarly, 25% of the data are between 20 and 30, and 25% of the data are above 30. Therefore, these

values separate the data into quarters; hence their more common name: quartiles.

The lower quartile or first quartile (abbreviated Q1) is the median value of the data below the 
median in a set. The upper quartile or third quartile (abbreviated Q3) is the median value of the 
data above the median in a set.

Together with the median, the lower and upper quartiles separate the data into four equal parts, meaning 
the same number of data values are in each area (less than the first quartile, between the first quartile and 
the median, between the median and the third quartile, and above the third quartile). This explains why 
the upper quartile is sometimes called the third quartile, as the median is the second quartile.

The difference between the lower quartile and upper quartile is referred to as the interquartile range, ab-
breviated IQR. The IQR measures the spread of the middle 50% of the data in the same way that the range 
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measures the spread of the entire data, but as IQR is based on medians, it is not susceptible to outliers in 

the same way that the range is. Indeed, IQR is used in a common statistical test for outliers. Although 

there are more complicated procedures, the use of IQR to test for outliers remains very common due to its 

simplicity and ease of calculation.

Data points that are further than 1.5 times the IQR above the upper quartile or below the lower 
quartile are considered outliers. Written as a formula, data point xi is an outlier if xi > Q3 + 1.5 ∙ 
IQR or xi < Q1 − 1.5 ∙ IQR.

Let’s now use the IQR test for outliers to determine if there are any outliers in Set 1 or Set 2:

Set 1: 0, 0, 1, 3, 8, 9, 12, 18, 20, 20, 20, 22, 26, 27, 30, 31, 32, 42, 59

Set 2: 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 23, 24, 24, 26

Having previously calculated the lower and upper quartiles for these data sets, we can quickly determine 

that the IQR for Set 1 is 30 – 8 = 22. Therefore, 1.5 · (22) = 33, and in order to be an outlier a data value 

would need to be larger than 63 (Q3 + 1.5 ∙ IQR = 30 + 33) or less than –25 (Q1 − 1.5 ∙ IQR = 8 – 33). 

None of our data values are less than –25, and the maximum, 59, turns out to not be quite high enough 

to be an outlier.

For Set 2, the IQR is 23 – 17 = 6. Therefore, 1.5 · (6) = 9, and in order to be an outlier a data value 

would need to be larger than 32 (Q3 + 1.5 ∙ IQR = 23 + 9) or less than 8 (Q1 −1.5 ∙ IQR = 17 – 9). As 

would be expected for data with a small spread, no values are in danger of being classified as outliers.

As nice as this test is, it does beg a question: why 1.5 times the IQR? Why not twice the IQR, or just the 

IQR itself? The use of the IQR makes good sense, as an outlier should be far removed from a typical 

value, and the IQR measures the range of the middle 50% of the data. But why a multiplier of 1.5, rather 

than any other number? Statistical legend is that the originator of this test justified the selection of 1.5 by 

saying that a multiplier of 2 looked like too much, but 1 wasn’t enough. 
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Although it is this type of apparent subjectivity that has at times caused the general public to mistrust 

statistics, the creation of this type of measure is at the heart of statistics and is what makes the discipline 

vibrant. Statisticians create new mathematical formulas or procedures to model uncertainty and, as in this 

case, represent and communicate information about data sets. If the measures do not successfully and reli-

ably do what they were designed to do, they are replaced by newer and better measures. As technology 

and computing power have become readily available, the types of data sets statisticians have been able to 

analyze and the types of questions that can be asked are also changing. An example of this is the idea of 

capturing the amount of variation in a data set in a single measure. We will now turn our attention to just 

this task.

Thus far we have looked at descriptive statistics as a way to report general information about the center and 

spread of a set of data. However, the measures of spread we have developed so far are not particularly good 

at communicating this information. As we have seen, range is very sensitive to outliers and may overstate 

the actual spread of the data. Quartiles give us a nice way to informally measure the spread, but mostly 

only when in relation to another set of data. It seems we need a more formal numerical measure of varia-

tion, similar to the measures of center. In this part of the resource guide we will develop such a measure.

Let’s return to data Set 1 and Set 2:

Set 1: 0, 0, 1, 3, 8, 9, 12, 18, 20, 20, 20, 22, 26, 27, 30, 31, 32, 42, 59

Set 2: 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 23, 24, 24, 26

Whatever measure of spread we develop, clearly Set 1 should have a larger numerical value than Set 2. 

What is it that makes Set 1 have a much greater spread than Set 2? In Set 1, many more values are far away 

from the center of the data than in Set 2. So, an initial idea for measuring the variation in a set of data is 

to measure the total distance the data values are away from the center. But which measure of center are 

we using? Fortunately for us, we can postpone this question for a little while since the mean, median, and 

mode of these two sets of data are all 20. Let’s look at the total difference away from 20 for each data set.
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SET 1 DIFFERENCE FROM CENTER SET 2 DIFFERENCE FROM CENTER

0 –20 15 –5
0 –20 15 –5
1 –19 16 –4
3 –17 17 –3
8 –12 17 –3
9 –11 18 –2
12 –8 18 –2
18 –2 19 –1
20 0 20 0
20 0 20 0
20 0 20 0
22 2 21 1
26 6 22 2
27 7 22 2
30 10 23 3
31 11 23 3
32 12 24 4
42 22 24 4
59 39 26 6

0 SUM 0

This is perhaps an unexpected result: both data sets have a total difference from the center of 0. Is this 

always true?

It depends on which measure of center we are using. Certainly this does not need to be true for the mode 

since the mode could be anywhere in the set where there is a large cluster of one particular data value. It 

also is not necessarily true for the median since the median does not depend on the particular values in 

the data set, just the number of values. If we imagine a data set with a given median, we can increase the 

largest value in the data set without changing the value of the median. This will, however, increase the 

difference between the last value in the data set and the median, so the sum of the differences will increase. 

Therefore, this sum of differences cannot always be 0.

What about the mean? Increasing any value in the data set will increase the value of the mean, so this 

seems potentially promising. Let’s consider the case above for Set 1 in a slightly generalized version and 

see what happens.
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First, each data value is subtracted from the mean: x1 − x, x2 − x , x3 − x , and so on until x19 − x . Then 

these differences are all added together:                 . In other words, x1 − x + x2 − x + x3 − x + … + x19 – x. 

We can reorder this calculation as x1 + x2 + x3 + … + x19 – x – x – x – … x. Since there are 19 terms in the 

original series, there are 19 copies of x , so this can be rewritten as                      . But there are 19 terms 

in the list, so in order to find the mean, we found the sum of all the data values and divided by 19! Since 

x =         , we now have                ∙         =         –         , so this indeed will always equal 0.

Our work to determine this did not rely on the data values, so this could just as easily refer to Set 2 as to 
Set 1. And there is certainly nothing special about these data sets having 19 values—our work could be 
rewritten with n in the place of 19. This would show that the sum of the differences between the mean and 
the data values is always 0, regardless of the data values themselves or the size of the data set.

19

i=1
∑ (xi – x)

19

i=1
∑ xi – 19 ∙ x 

19

i=1
∑ xi

19

19

i=1
∑ xi – 19

19

i=1
∑ xi

19

19

i=1
∑ xi

19

i=1
∑ xi

The sum of the differences between the data values and the mean of the data set is always 0. In 

other words, if the data set has n values,
n

i=1
∑ (xi – x) = 0.

Proof:       means subtract each data value from the mean and then add all of the differenc-
es together. Writing out a few terms in the summation to get an idea of what is going on yields:  
                = (xi – x)+ (x2 – x)+ (x3 – x)+…+ (xn – x).

Notice there are n copies of x. This sum can be rearranged as: = x1 + x2 + x3 +…+ xn − n ∙ x.

The first part of this sum lends itself nicely to sigma notation, and as x =        , this equals: =

The n’s cancel, and therefore we are left with: = 

All of this is very nice and interesting, but it doesn’t help us solve our original problem: how to develop a 
numerical measure of the spread for a data set. We would like to use something with the difference between 
each value and the mean, but these differences sum to 0 for all sets of data. Can we fix this somehow?

In order to fix this, we need to remove the negative differences, or make the differences that were negative 
no longer negative. If every difference were positive, then the sum of these differences would not be 0. 

n

i=1
∑ (xi – x)

n

i=1
∑ (xi – x)

n

i=1
∑ xi

n

n

i=1
∑ xi – n ∙

n

i=1
∑ xi

n
n

i=1
∑ xi –

n

i=1
∑ xi = 0.
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Also, values that are very far away from the mean should be worth more than values that are very close to 
the mean. Two options come to mind: 1) take the absolute value of the differences prior to summing and 
2) square the differences prior to summing. After much discussion, statisticians decided to square the dif-
ferences rather than take the absolute value (although there is support among some statisticians for using
the absolute value).

Let’s take another look at our table, this time with the squares of the differences included.

SET 1 xi – x (xi – x)2 SET 2 xi – x (xi – x)2

0 –20 400 15 –5 25
0 –20 400 15 –5 25
1 –19 361 16 –4 16
3 –17 289 17 –3 9
8 –12 144 17 –3 9
9 –11 121 18 –2 4

12 –8 64 18 –2 4
18 –2 4 19 –1 1
20 0 0 20 0 0
20 0 0 20 0 0
20 0 0 20 0 0
22 2 4 21 1 1
26 6 36 22 2 4
27 7 49 22 2 4
30 10 100 23 3 9
31 11 121 23 3 9
32 12 144 24 4 16
42 22 484 24 4 16
59 39 1521 26 6 36

388 0 4242 SUM 388 0 188

Now it seems we have a measure we can use! The sum of the squares of the difference between each data 
value and the mean is far greater for Set 1 than for Set 2, telling us that Set 1 is much more spread out 
than Set 2.

Notice that this measure controls for the mean, since the mean is subtracted from each value, allowing us 
to compare the variation of data sets that do not have the same mean. In this case, Set 1 and Set 2 had the 
same mean. But, let’s say every data point in Set 2 was increased by 10. The means of Set 1 and Set 2 would 
no longer be the same, but we would still want to say that Set 1 was more spread out than Set 2.
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Increasing every data value in Set 2 by 10 will also increase the mean by 10, which means the sum of the 

squares of the differences between the data values and the mean will be the same 188 we had earlier. So 

this measure of variation is independent of the mean of our data set.

In its current form, however, this measure requires both data sets to have the same number of values. One 

can imagine a collection of data that is as spread out as Set 2 but has a larger sum of squares of differences 

than Set 1 simply by virtue of having more data points. For example, if we add enough values between 15 

and 26 to Set 2 in such a way as to not change the mean, we can generate a sum of squares of differences 

that is larger than 4,242. This should not imply, however, that Set 1 is less variable than Set 2, so we need 

to control for the size of the data set. In order to do this, we divide by the number of data points, creating 

the average of the squares of the difference between the data points and the mean. This statistical measure 

is called the variance.

The variance of a set of data is the average of the squared difference between each data point 
and the mean. Variance is denoted by the Greek letter sigma squared, written as o 2. In symbols, 

o 2 =                   .

n

i=1
∑ (xi – x)2

n

For example, the variance of Set 1 is          = 223.263. The variance of Set 2 is       = 9.895.

It does take time to become accustomed to variance values and interpreting how much a data set varies 

from this value. As we can see, Set 2 is very homogenous, so a variance of 9.895 is actually rather low. Set 

1 is extremely varied, and it has a variance of over 200!

When calculating variance by hand (which should be done rarely and only when absolutely necessary), us-

ing the above formula is rather lengthy and time-consuming. Furthermore, it uses the mean in calculation, 

and if the mean is not a whole number (like 20), the mean will be rounded. This makes the calculations 

much worse and also introduces an element of error into the variance calculation. Therefore, we will devel-

op an equivalent formula to make calculating the variance by hand slightly easier and less prone to error.

4242
19

188
19
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Let’s focus on the numerator of the variance calculation:                 . Each data value is subtracted from the 
mean and then squared, and all these values are summed. In symbols:

                 = (x1 − x)2 + (x2 − x)2 + (x3 − x)2 + … + (xn − x)2 .

Expanding each of these binomials gives us:

= x1 
2 − 2x1 x +  x2 + x2 

2 − 2x2x + x2 + x3 
2 − 2x3x + x2 + … + xn 

2 − 2xn x + x2 .

Rearranging terms a bit and recognizing that there are n copies of x2 yields:

= x1 
2 + x2 

2 + x3 
2  + … + xn 

2 + n ∙ x2 − 2x1x − 2x2x − 2x3x − … − 2xnx.

The first n terms in this arrangement can be collapsed nicely using sigma notation, and all of the remaining 
terms share a common factor of x , so: =           + x ∙ (n ∙ x − 2x1 − 2x2 − 2x3 − … − 2xn ).

Part of this looks familiar from our proof that             = 0, but we have two copies of each xi, not just 
one.

Splitting each term apart therefore gives us:

=          + x ∙ [(n ∙ x – x1 – x2 – x3 – … – xn ) – x1 − x2 − x3 − … − xn].

But, the inner parentheses sums to 0, since n ∙ x = n ∙          =          = x1 + x2 + … + xn .

Therefore, this simplifies to: =          + x (−x1 − x2 − x3 − … − xn ).

Factoring out the negative yields: =          − x (x1 + x2 + x3 + … + xn ).

And the parentheses lend themselves nicely to sigma notation: =          – x ∙

This is potentially a much nicer calculation to do by hand. Notice the first summation is the sum of the 
squares of the data values, while the second summation is the sum of the data values. Although this formula 
looks very nice, part of the reason to simplify or alter the original equation was to avoid using the mean.

Therefore, we can substitute          for x and get: =           –          ∙         , or           –           .

n

i=1
∑ (xi – x)2

n

i=1
∑ (xi – x)2

n

i=1
∑ xi 

2 
n

i=1
∑ (xi – x)

n

i=1
∑ xi 

2 

n

i=1
∑ xi 

n

i=1
∑ xi

n
n

i=1
∑ xi 

2 
n

i=1
∑ xi 

2 
n

i=1
∑ xi 

2 
n

i=1
∑ xi  

n

i=1
∑ xi

n

n

i=1
∑ xi 

2 

n

i=1
∑ xi

n

n

i=1
∑ xi  

n

i=1
∑ xi 

2 

n

i=1
∑ xi

n









 2
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The following calculations are equivalent to                     for finding the variance of a data set:

o 2 =                              or o 2 =                             .

n

i=1
∑ (xi – x)2

n

n

i=1
∑ xi

n

n

i=1
∑ xi 

2 – x ∙
n

i=1
∑ xi 

2 

n

i=1
∑ xi

n









 2

–
n

Note that in the final version of this formula, the two sigmas are asking for very different calculations. 

          means to square each data value and then sum, whereas            asks for the sum of each data value, 

and then that sum is squared.

These three formulas are all equivalent, but it should be stressed that the variance of a set of data should 
only be calculated by hand when completely necessary. Prior to the advent of computing technology, a need 
to accurately calculate variances by hand generated an interest in these alternative formulas. Almost all 
hand-held calculators and many computer programs have the ability to calculate the variance (and mean, 
median, mode, and quartiles). The reader should take time to become familiar with whatever calculator 
technology is available and make sure these statistical measures can be properly found using technology.

Although variance is a robust measure of the variation in a data set, it is a bit difficult to properly interpret 
what the variance means in the context of the data. This is partially because, as we saw earlier with Set 1, 
sometimes the variance is an extremely large number relative to the values in the data set. Saying Set 1 
has a variance of 223.263 is nice enough when we are comparing it to the variance for Set 2, but when the 
data values in Set 1 range from 0 to 59, saying the variance is 223.362 doesn’t really tell us anything useful 
about the values in Set 1.

The value of the variance can be so large because the differences between the data values and the mean 
are squared, which often creates terms much larger than any of the values in the data set. As we can see in 
the table for Set 1, the data value of 59 contributed 1521 to the sum of the squares of the differences. Even 
dividing this contribution by 19 to control for the size of the data set still results in 80.05263, a value larger 
than 59, the largest value in the data set. And 59 wasn’t even an outlier for Set 1!

n

i=1
∑ xi 

2
n

i=1
∑ xi









 2
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So, we would like some way to make the variance value smaller in order to better relate it to the original 
values in the data set. As we squared data values (well, technically differences of data values), it seems that 
taking the square root of the variance would be possible to justify. Let’s see if we can figure out what the 
units in our variance calculation are and see if finding the square root of the variance returns our units to 
the same as those in the original data.

Assume Set 2 is the height, in inches, of a series of plants. Each data value is therefore in terms of inches: 
15 inches, 15 inches, 16 inches, and so on. The mean of this data set will be 20 inches, and so the differ-
ence between each data value and the mean will also be in terms of inches, although perhaps “negative 
inches,” which is a bit strange. But, we squared these differences in order to avoid this negative problem, so 
we end up with square inches as our unit: 25 inches squared, 25 inches squared, 16 inches squared, and so 
on. Finding the mean does not change the units, so the variance of Set 2 is 9.895 inches squared. Taking 
the square root of the variance, then, allows us to return to the units of the original data. The square root 
of the variance is called the standard deviation.

The standard deviation of a data set, denoted by the Greek letter sigma, is the square root of the

variance for the data. In symbols, this is o  = 

n

i=1
∑ (xi – x)2

n√
The standard deviation of Set 1 is 223.263√              = 14.942. The standard deviation of Set 2 is 9.895√          = 3.146.

If necessary, the range can be used to quickly generate an extremely rough approximation of the standard 
deviation for a data set. In general, the standard deviation is approximately one-quarter of the range. This 
is an extremely rough approximation and should only be used if calculating the exact standard deviation is 
impossible or not necessary.

A crude approximation of the standard deviation is the range divided by 4; o  =          .range
4
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The range of Set 1 is 59, and     = 14.75 ≈ 14.942. The range of Set 2 is 11, and      = 3.75 ≈ 3.146. As can be 
seen from these two examples, sometimes this approximation is fairly good, as with Set 1 (about 1% error), 
but other times this approximation is not so good, as with Set 2 (about 20% error). As such, it should be 
used sparingly and with caution.

Like the variance, the standard deviation is used to quantify the consistency of a data set. A low standard 
deviation indicates the data are clustered close together while a higher standard deviation is caused by 
data that are more spread out. In cases where consistency is desired, then, the standard deviation takes on 
increasing importance.

Let’s consider an example. Two companies, Crazy Cam’s and Steady Sam’s, manufacture PVC pipe that is 
3 inches in diameter. Clearly there is some variation in PVC pipe manufacturing, as not every pipe will be 
completely identical. Ten pipes are selected at random from the most recent batch at each company, and 
the diameters of the pipes are measured. The data are shown below.

Crazy Cam: 1, 1, 1, 1, 1, 5, 5, 5, 5, 5

Steady Sam: 2.9, 2.9, 2.9, 2.9, 2.9, 3.1, 3.1, 3.1, 3.1, 3.1

Both of these data sets have a mean (and median) of the specified 3 inches, but clearly those purchasing 
PVC pipe will select Steady Sam’s rather than Crazy Cam’s. The standard deviation of Crazy Cam’s data 
is 2 (think about why this is true without actually calculating it), while the standard deviation of Steady 
Sam’s data is 0.1 (again, think this through without calculating).

Although low standard deviations are desirable when seeking consistency, extremely low standard devia-
tions (like 0.1) are, in fact, quite rare in any form of naturally occurring data. In order for the standard 
deviation to be 0, all data values would need to be identical, and even several small variations away from 
the mean start to increase the standard deviation.

The standard deviation also can act as a way to compare the relative position of two data values relative to 
their data sets, as we will discuss next.

Taylor took a math test and a science test. Let’s try to determine which test Taylor performed better on. 
Taylor scored 58 on the math test and 56 on the science test. On which test did Taylor perform better? In 
the absence of more information, it appears Taylor did better on the math test.

59
4

11
4
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Let’s take another look at this problem, but with different information. Taylor scored a 58 on the math test, 
and the average score on the math test was 54. Taylor scored 56 on the science test, and the average score 
on the science test was 50. On which test did Taylor perform better? Now it seems that Taylor did better 
on the science test, since the score on the science test was 6 points above the mean, while the score on the 
math test was only 4 points above the mean.

Now, let’s consider this with a bit more information: Taylor scored a 58 on the math test. The average score 
on the math test was 54, and the standard deviation of the scores was 1.5. Taylor scored 56 points on the 
science test. The average score on the science test was 50, and the standard deviation of the scores was 5. 
On which test did Taylor perform better? Although Taylor’s score on the math test is closer to the mean 
than the science score, we also know that the math scores were clustered much closely together than the 
science scores. On the math test, Taylor performed better than two standard deviations above the mean, 
while on the science test Taylor performed a bit better than one standard deviation above the mean. There-
fore, Taylor did better on the math test than the science test.

Historically, this is what “grading on the curve” meant. Although used inappropriately now to mean some-
thing like adding points to every score, to grade on a curve really means to assign grades based on how stu-
dents do relative to each other. Usually, scores that were two standard deviations above the mean received 
a grade of ‘A’, scores that were between one and two standard deviations above the mean received a grade 
of ‘B’, scores that were within one standard deviation of the mean were ‘C’s, scores that were between one 
and two standard deviations below the mean were ‘D’s, and scores worse than two standard deviations 
below the mean were assigned ‘F’s.

The idea that Taylor scored about two standard deviations above the mean on the math test and about one 
standard deviation above the mean on the science test is called a z-score.

A z-score represents the number of standard deviations a particular data value is above or below 

the mean. A z-score is calculated by the formula z =        . A z-score is also sometimes called a 
standard score.

xi – x
o

Taylor’s z-score on the math test is            = 2.667. Taylor’s z-score on the science test is             = 1.2.58 – 54
1.5

56 – 50
5
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We can notice a few items about z-scores right away. Z-scores equal 0 if the data value is the same as 

the mean, and z-scores are positive or negative if the data value is above or below the mean, respectively. 

Z-scores will almost always be non-whole values, based on the division involved. Means and standard

deviations themselves are already rarely whole numbers, and a division of two non-whole numbers will,

more often than not, produce another non-whole number. Therefore, z-scores are not something to try to

calculate by hand unless absolutely necessary. Furthermore, most z-scores are relatively small, between –1

and +1. It is somewhat difficult for z-scores to be greater than 1 or less than –1, difficult for z-scores to be

greater than 2 or less than –2, and extremely difficult for z-scores to be greater than 3 or less than –3. To

illustrate this, let’s look at the data from Set 1 and Set 2 again with the corresponding z-scores for each

data value.

SET 1 Z-SCORE SET 2 Z-SCORE

0 –1.339 15 –1.590
0 –1.339 15 –1.590
1 –1.272 16 –1.272
3 –1.138 17 –0.954
8 –0.803 17 –0.954
9 –0.736 18 –0.636
12 –0.535 18 –0.636
18 –0.134 19 –0.318
20 0 20 0
20 0 20 0
20 0 20 0
22 0.134 21 0.318
26 0.402 22 0.636
27 0.468 22 0.636
30 0.669 23 0.954
31 0.736 23 0.954
32 0.803 24 1.272
42 1.472 24 1.272
59 2.610 26 1.907

0 SUM 0

Out of all these data points, only 59 from Set 1 has a z-score greater than 2. Indeed, this data value is so 
far removed from most of Set 1 that initially we were concerned the 59 was an outlier! In Set 2, however,
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something strange is happening. Although the data points are clustered close together, the z-scores for in-
dividual values are larger than we might perhaps expect. The value of 24 in Set 2, for instance, has a z-score 
of 1.272, while the value of 32 in Set 1 has a z-score of 0.803. The 32 in Set 1 is much farther away from 
the mean than the 24 in Set 2, so what is happening? The z-score measures how many standard deviations 
a value is away from the mean. So, the very fact that Set 1 is spread out is what allows for values to be 
further away from the mean; it is easier to be away from the mean in Set 1, so we should be less surprised 
by values that stray from the mean. This causes the z-score for the 32 to be somewhat lower than we might 
expect. By contrast, in Set 2, the data are clustered very close together, and the standard deviation is very 
low. Therefore, it is more difficult to stray very far from the mean, so the z-score for the 24 is higher than 
we might expect.

Notice also that the sum of the z-scores for both these data sets is 0. Hopefully this does not surprise us 
upon reflection. If we imagine the sum of all the z-scores for, say, Set 2, we have z1 + z2 + z3 +…+ z19 . Each 

of these z-scores measures the number of standard deviations away from the mean each data value is, so 

z1 =          , z2 =          , and so on until z19 =             . To sum all these fractions together looks ugly until

we realize they all have the same denominator, so:        +         +         + … +           =                               . 

By now we have seen the numerator of this fraction more than once, and so we recognize that it sums to 

0. Therefore, the sum of the z-scores is always 0 for any data set.

x1 – x
o

x2 – x
o

x19 – x
o

x1 – x
o

x2 – x
o

x3 – x
o

x19 – x
o

x1+x2+x3+…+x19 – n ∙ x
o

ExamplE 3.2a: Assume the average height of people in a major metropolitan area is 68.5 

inches, with a standard deviation of 2.5 inches. What is the z-score for an individual with a 

height of 72 inches?

Solution: z =             , so = 1.4.x – x
o

72 – 68.5
2.5

ExamplE 3.2b: Assuming the information from the Example 3.2a holds, how tall would 

someone need to be in order to have a z-score of –3?

Solution: z =             , so –3 = . Solving for x yields 61 inches.x – x
o

x – 68.5
2.5
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It is natural to wonder at this point how likely it is to find someone in this population who is 61 inches tall, 

or, to phrase it more generally, how likely it is to have a z-score of –3. The relationship between z-scores 

and probabilities is complicated, but it is at the heart of statistics. We will by no means answer this ques-

tion fully during the remainder of the Mathematics Resource Guide, but we hope to give the reader some 

background and sense of this important, fundamental connection in statistics. To answer this specific 

question about the probability of finding someone in this population who is 61 inches or taller, however, 

we first need some understanding of probability.

The chance that an event will or will not occur is a seemingly simple concept, but probability becomes 

fairly complicated quickly. In this section, we will explore introductory probability concepts in order to 

help us better understand the mathematics of chance. Once we are familiar with the rules of probability, 

we will look at probability distributions, a foundational concept in statistics.

At its core, probability consists of a single formula: the probability of an event occurring is the number of 

ways that event can occur divided by the total number of possible outcomes. In symbols, the probability of 

an event E occurring is given by p(E), where p(E) =                                            . Although mathematically 

simple, this formula is capable of dealing with a large variety of probability problems. Counting the total 

number of outcomes or the number of ways the event E can occur can become more complicated, but our 

basic probability structure will remain the same. We will begin with a few examples.

number of ways event E can occur
total number of outcomes

ExamplE 3.3a: What is the probability of rolling a fair die numbered 1–6 and rolling a prime 

number (1 is not prime)?

Solution: Since there are three prime numbers on a die numbered 1–6 (2, 3, and 5), the probability 

of rolling a prime number is      =     .3
6

1
2
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ExamplE 3.3b: What is the probability of drawing a face card from a standard deck of play-

ing cards?

Solution: As there are 12 face cards in a standard deck of playing cards (Jack, Queen, and King of 

spades, clubs, diamonds, and hearts), the probability of drawing a face card is      =      , or about 

0.2308.

12
52

3
13

ExamplE 3.3d: Using the same bag of marbles from ExamplE 3.3c, what is the probability of 

drawing a blue marble?

Solution: There are 12 blue marbles and 25 total marbles, so the probability of drawing a blue 

marble is        , or 0.48.12
25

ExamplE 3.3c: A bag contains 12 blue marbles, 8 white marbles, and 5 yellow marbles. What 

is the probability of drawing a white marble from the bag?

Solution: Since there are 8 white marbles out of 25 total marbles, the probability of drawing a white 

marble is       = 0.32.8
25

ExamplE 3.3E: Using the same bag of marbles, what is the probability of drawing a yellow 

marble?

Solution: There are 5 yellow marbles, so the probability of drawing a yellow marble is        , or 0.2.5
25
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ExamplE 3.3f: Using the same bag of marbles, what is the probability of drawing a green 

marble?

Solution: As there are no green marbles in the bag (and we are not allowed to combine a blue 

marble and yellow marble), the probability of drawing a green marble is 0.

ExamplE 3.3g: Using the same bag of marbles, what is the probability of drawing a marble 

that is not blue?

Solution: Since there are 13 marbles that are not blue, the probability of drawing a non-blue marble 

is        or 0.52. Notice that p(blue) + p(not blue) = 1.13
25

ExamplE 3.3h: Using the same bag of marbles, what is the probability of drawing a blue, 

white, or yellow marble?

Solution: Since there are 25 marbles that are blue, white, or yellow, the probability of drawing a 

blue, white, or yellow marble is 1.

These examples illustrate the following basic properties of probability:
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The probability of any event is a number between 0 and 1. An event with probability 0 is impos-

sible, and an event with probability 1 is certain. In symbols, for any event E, 0 ≤ p(E) ≤ 1.

The probability of an event occurring plus the probability of the event not occurring is 1. The prob-

ability of an event E not occurring is called the complement of E and is denoted by E'. In symbols, 

p(E) + p(E') = 1.

In a given situation, the sum of the probabilities of all possible events must equal 1, since one of the 

possible events must occur. In symbols, if there are n different possible outcomes,     p(Ei) = 1.
n

i=1
∑

These properties are clear if we consider a specific context where it is possible for us to imagine the set of 
all possible outcomes, like the bag of marbles. However, we will also deal with probability situations in 
which imagining or constructing the set of all possible outcomes is either impossible or extremely difficult. 
Therefore, we will develop properties like the ones just listed to help us deal with more complicated prob-
ability problems. Next we will develop a few rules of basic probability. Again, these rules will be developed 
from a context where they are not necessary, but once developed these rules can be applied to more general 
probability situations.

While we use our initial definition for probability, p(E) =                                            for the probability 
of a single event happening, how do we proceed when there are two (or more) events happening? When 
there are multiple events, there are two possibilities:

1.  The occurrence (or non-occurrence) of one event does not affect the occurrence (or non-occurrence)
of the other event(s).

2.  The occurrence (or non-occurrence) of one event does affect the occurrence (or non-occurrence) of
the other event(s).

These two situations are represented in the following examples.

number of ways event E can occur
total number of outcomes
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ExamplE 3.3i: In a board game, two fair six-sided dice are rolled. The first die is numbered 

1–6, and the second die has two faces each of the following three colors: green, red, and 

blue. What is the probability of rolling the two dice and getting an even red result?

ExamplE 3.3j: Two cards are drawn from a standard deck of 52 playing cards without re-

placement (meaning the first card is not put back in the deck before the second card is 

drawn). What is the probability of drawing two kings?

Both examples require two outcomes. In ExamplE 3.3i, the two outcomes are an even number and a red 
face. In ExamplE 3.3j, the two outcomes are drawing a king and then another king. However, in ExamplE

3.3i, the result on the numbered die does not affect the result on the colored die, or vice versa. In ExamplE

3.3j, drawing an ace on the first draw changes the probability of drawing an ace on the second draw. We 
call events like those in ExamplE 3.3i independent, and events like those in ExamplE 3.3j dependent.

Two (or more) events are called independent if the occurrence (or non-occurrence) of one event 
does not affect the occurrence (or non-occurrence) of the other event(s). When determining the 
probabilities of each event, the events can be considered separately since there is no meaningful 
interaction between the events.

Two (or more) events are called dependent if the occurrence of one event does affect the occur-
rence  of the other event(s). When determining the probabilities of each event, the events cannot 
be considered separately, as the events are connected in a meaningful way.
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In the next section of the resource guide, we will examine the probabilities of dependent events. First we 
will focus on only independent events. Let’s begin with ExamplE 3.3i from earlier.

ExamplE 3.3i (Revisited): In a board game, two fair six-sided dice are rolled. The first die is 

numbered 1–6, and the second die has two faces each of the following three colors: green, 

red, and blue. What is the probability of rolling the two dice and getting an even red re-

sult?

Solution: Using our definition of probability, p(E) =                                                       , requires counting  

the number of possible ways to get an even red result and the total number of outcomes. Since 

both dice have six sides, the Multiplication Rule tells us there are 6 · 6 = 36 total outcomes. As there 

are three ways to get an even number on the numbered die and two ways to get a red result from 

the colored die, again the Multiplication Rule tells us there are 3 · 2 = 6 ways to get an even red re-

sult. Therefore, the probability of getting an even red result is        =        .

number of ways event E can occur
total number of outcomes

6
36

1
6

Let’s see if there is a relationship between the combined probability of getting an even red result and the 
individual probabilities of getting an even number on the numbered die and rolling a red face on the col-
ored die. For the numbered die, three of the six faces are even numbers, so the probability of rolling an 
even number is    =   . For the colored die, two of the six faces are red, so the probability of rolling a red 

face is     =    . As    ·   =     , it seems we should multiply the probabilities. Is this a coincidence, or does it 

make mathematical sense? Let’s look at another example.

1
2

3
6

1
3

2
6

1
2

1
6

1
3

ExamplE 3.3k: Each morning before going to work, Mr. Scott selects his outfit at random. 

He has nine shirts: four blue, three white, one yellow, and one green. He has seven pairs of 

pants: four khaki, two black, and one grey. He has two pairs of shoes: one brown and one 

black. What is the probability that Mr. Scott will wear a blue shirt with black pants and 

brown shoes?

Solution: Using p(E) =                                   , we first need to determine the total number 

of possible outfits. Once again, the Multiplication Rule applies; since there are 9 shirts, 7 pairs of 

pants, and 2 pairs of shoes, we can say there are 9 · 7 · 2 = 126 total possible outfits. As we are 

looking for a white shirt with black pants and brown shoes, the Multiplication Rule says there

number of ways event E can occur
total number of outcomes
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are 4 · 2 · 1 = 8 ways this outfit could be selected. Therefore, the probability of Mr. Scott randomly 

choosing this outfit is        =      , or about 6.35%.8
126

4
63

Is the product of the individual probabilities equal to the total probability? The probability of selecting a 
white shirt is    , the probability of selecting black pants is    , and the probability of selecting brown shoes is 
  . The product of these probabilities is     ·    ·    =      , as anticipated. It seems we are ready to general-

ize.

4
9

8
126

1
2

4
9

2
7

1
2

2
7

The probability of two (or more) independent events occurring together is the product of the prob-

abilities of each individual event. In symbols, if there are two events A and B, this is written as  

p(A and B) = p(A) · p(B). If there are n events, this is written as p(E1 and E2 and … and En) =  

p(E1) · p(E2) … p(En).

The proof of this relies on the Multiplication Principle and fraction multiplication. We will prove this for 
two events, and the proof for n events is very similar and left to the reader.

Let A and B be two independent events with probabilities p(A) and p(B), respectively. This means 

for each event there are some number of ways the event can occur and some total number of out-

comes. In symbols, p(A) =       , where Ao represents the number of ways event A can occur out of a 

total number of outcomes At . Similarly, p(B) =       where Bo represents the number of ways event 

B can occur out of a total number of outcomes Bt .

Ao
At

Bo
Bt
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We now use the Multiplication Principle to determine how many total outcomes there are and how many 
different ways events A and B can occur. Since A and B are independent, we do not need to alter any of the 
values of Ao , At , Bo , or Bt . The Multiplication Principle tells us there are At · Bt total outcomes, and Ao · Bo 

different ways that events A and B can occur. Therefore, p(A and B) =           . But          =       ·      , which 
equals p(A) · p(B), as desired.

Now that we have established the rule for the probability of independent events, we are able to calcu-

late probabilities in situations where we may not be able to use p(E) =                                          because 

counting the number of ways an event can occur or the total number of outcomes is either impractical or 

impossible.

Let’s consider an example. A manufacturer of laptop computers reports that only 5% of its laptops require 

significant maintenance within a year of purchase. If two laptops are purchased from this manufacturer, 

what is the probability that both will need significant maintenance within a year of purchase? Assuming 

the failure of each laptop to be an independent event, the probability of two laptops failing is (0.05) · (0.05) 

= 0.0025, or 0.25%. This is an extremely unlikely event.

The assumption of independence in this situation is plausible, but by no means guaranteed. Maybe the 

defective laptops are disproportionately produced at a particular factory, or use a part from a different 

supplier from other laptops made by the company, so that the defective laptops are not evenly distributed 

throughout purchases. In this case, two laptops purchased together may be related (from a manufacturing 

standpoint), and so the failure of one may signal the increased likelihood of the other failing as well. The 

assumption of independence should always be questioned, as there may be times when assuming events 

are independent is not appropriate. For example, just because the probability of being struck by lightning 

is some value, say 0.002, doesn’t mean the probability of an individual being struck by lightning twice is 

(0.002) · (0.002)= 0.000004 , because the events of the same person being struck by lightning twice may 

not be independent. Perhaps the individual works outdoors more frequently than most people, or maybe 

there is some particular physiological makeup that makes the individual more likely to be hit by lightning 

than others.

When the assumption of independence breaks down, we are not able to multiply the probabilities of the 

individual events together straight away. Next, we will look at some situations where the events are depen-

dent and determine how we should approach these problems mathematically.

Ao 
At

Bo
Bt

Ao · Bo
At · Bt

Ao · Bo
At · Bt

number of ways event E can occur
total number of outcomes
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Many events we experience appear to be independent, but often the probability of future events is depen-
dent on the events that occur today. Although the identification of dependent events is usually clear upon 
reflection, sometimes, without careful consideration, an underlying assumption of independence may be 
missed. In this portion of the Mathematics Resource Guide, we will illustrate examples of when indepen 
dence should not be used and how to handle dependent problems mathematically. We will begin with an 
example which at first glance seems straightforward, but upon reflection is slightly more complicated than 
originally thought.

ExamplE 3.3l: The probability of winning the jackpot in a weekly lottery is      . If a per-

son is selected at random from a phonebook and called, what is the probability that he/

she is last week’s winner?   

Solution: Although we want to say the probability of randomly selecting a winner is                 this is 

not the case. There are a few problems with this assumption. Some of the problems are logistical: 

what if the winner doesn’t answer the phone or isn’t listed in the phone book? What if the winner 

doesn’t notice he/she has the winning lottery ticket and so never collects his/her prize? These are all 

valid concerns that interfere with the probability of selecting a winner being                .

However, even if all these concerns are dismissed, the probability of selecting a winner still isn’t 

      . Let’s say we are operating in a perfect logistical world: everyone is listed in the perfect 

phone book, and everyone always answers their phone, and every winner always collects his/her 

prize. Is the probability of selecting a winner                ?

The probability of selecting a lottery winner at random from a phone book (even in a perfect lo-

gistical world) should be less than                since not everyone plays the lottery. Say only 1 out of 

3 people play the lottery. Then, in order to call someone at random and have them be a lottery 

winner, the person who is selected has to play the lottery, which isn’t guaranteed to begin with. To 

select a person who played the lottery will take 3 calls (on average), and then only                of those 

lottery players will be a winner. Therefore, the probability of randomly selecting a lottery winner 

from the phone book is      ·                =                .

1
60,000

1
60,000

1
60,000

1
60,000

1
60,000

1
180,000

1
60,000

1
60,000

1
60,000

1
3
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Mathematically this looks like what we do with independent events: the two probabilities are multiplied 
together. But, there is an important and subtle difference in what the               represents. The               is not 
the probability of winning the lottery; it is the probability of winning the lottery given that one purchases 
a ticket. The lottery does not select winners from people who don’t purchase tickets, and one can imagine a 
lottery advertising campaign that tries to exploit this idea. (“I played the lottery, and I’m a winner. In fact, 
everyone who is a winner is someone who played the lottery.”)

The events of purchasing a lottery ticket and winning the lottery are dependent events because the occur-
rence of one event (buying the ticket) affects the occurrence of the other event (winning the lottery). The 
probability of two dependent events occurring is the product of the probability the first event occurs and 
the probability the second event occurs given that the first event occurs.

1
60,000

1
60,000

The probability of two dependent events occurring together is the product of the probability of 
the first event occurring and the probability of the second event occurring given the first event 
occurred. In symbols, if the two events are A and B, this is written as p(A and B) = p(A) · p(B|A). 
p(A) represents the probability of event A occurring, and p(B|A), read aloud as “the probability of 
B given A,” represents the probability that event B occurs if event A has already occurred. p(B|A) is 
called a conditional probability.

The probability of winning the lottery is the probability of purchasing a ticket times the probability of 
winning given a ticket has been purchased. Let p(T) represent the probability of purchasing a ticket and 
p(W|T) be the probability of winning given a ticket has been purchased. Since p(T) =    and p(W|T) =  
            , p(T and W ) = p(T) · p(W|T) =      ·             =             .1
60,000

1
3

1
3

1
60,000

1
180,000

ExamplE 3.3m: What is the probability of purchasing a lottery ticket and not winning?

Solution: p(T) =    , and the probability of not winning given a ticket has been purchased is  

p(W' |T) =               . Therefore, p(T and W' ) =      ·                =                .

1
3

59,999
60,000

59,999
180,000

1
3

59,999
60,000
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ExamplE 3.3n: What is the probability of not purchasing a lottery ticket and winning?

Solution: Since p(T) =       , p(T') =      . However, given a ticket has not been purchased, it is impossible

to win, so p(W|T') = 0. Therefore, p(T' and W) =      · 0 = 0.

2
3

1
3

2
3

ExamplE 3.3o: What is the probability of not purchasing a ticket and not winning?

Solution: p(T') =      . Since not winning the lottery is a guarantee if no ticket is purchased, p(W' |T') =1.

Therefore p(T' and W') =      · 1 =      .

2
3

2
3

2
3

Since these four scenarios (purchasing and winning, purchasing and not winning, not purchasing and 
winning, not purchasing and not winning) are the only four possible outcomes in this situation, the prob-
abilities of these four events should sum to 1. Indeed,              +             + 0 +     = 1. Later on, we will 
discuss  how we might use this distribution of probabilities to determine the best course of action with 
respect to this lottery.

1
180,000

59,999
180,000

2
3

ExamplE 3.3p: The probability of drawing a jack from a standard deck of playing cards is 

       =     . Is the probability of drawing two jacks from a deck of playing cards       ·      =         ?

Solution: It depends on whether the two events (drawing the first jack, drawing the second jack) 

are considered independent or dependent. If the first jack is replaced before the second jack is 

drawn, then the two events are independent, and the probability of drawing two jacks is        . If, on 

the other hand, the two cards are drawn without replacement, then the probability is not        be-

cause when the second jack is drawn, the probability of drawing a jack is no longer       . Once a 

jack is drawn, the probability of drawing another jack changes because now there are only 3 jacks 

out of 51 possible cards. Symbolically, we say p(J|J) =      , and therefore p(J and J) = p(J) · p(J|J) =

       ·       =         .

4
52

1
13

1
169

1
13

1
13

1
169

1
169

1
13

3
51

1
13

1
17

1
221
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ExamplE 3.3q: What is the probability of being dealt exactly three cards of the same value 

in a hand of five cards from a standard deck of playing cards?

Solution: Since this is a hand of cards, the cards are dealt without replacement, so the probabilities 

of later cards will depend on the cards previously dealt. Rather than picturing all five cards dealt 

simultaneously, let’s imagine the cards being dealt one at a time. The first card can be any card, but 

the second and third card need to match that card, which means the probability of the second and 

third card being what we want are         and      , respectively. Then, we need two additional cards 

that do not match the three we already have, so those probabilities are         and        . Thus far we have 

       ·      ·     ·      ·      =           .

But, this calculation assumes we were dealt the five cards in a specific order: matching, matching, 

matching, something else, something else. We don’t necessarily need the cards to be in this order; 

we just need these cards to be in the hand at the end of the deal. Therefore, we need to consider 

the different possible arrangements of the five cards. If we start to list all the possibilities, this looks 

like:

match, match, match, else, else

match, match, else, match, else

match, else, match, match, else

But wait! We have five spots, and we need to select three for the matching cards. No spot can be se-

lected more than once, and the order of selection does not matter. This is a combination! Therefore, 

there are        = 10 ways this can occur.

Therefore, the final probability of being dealt exactly three cards of the same value in a hand of five 

cards is        ·       ·        ·       ·        ·        =            , or approximately 2.257%.

3
51

2
50

48
49

47
48

52
52

3
51

2
50

48
49

47
48

47
20825

5

3











52
52

3
51

2
50

48
49

47
48

5

3











94
4165

We will conclude this section with one more example using probability of dependent events.

The probability of getting a 34 or higher on the ACT math section is 8%, and the probability of getting 
700 or higher on the SAT math section is 6%. But for students who took both tests, the probability of get-

mathResource.indd   114 10/15/2014   10:59:26 PM

U
SA

D
 - 

Sa
nt

a 
An

a,
 C

A

N
or

th
w

es
t P

a.
 C

ol
le

gi
at

e 
A

ca
de

m
y 

- 
E

rie
, P

A



2018–2019 Mathematics Resource Guide
114 115USAD Mathematics Resource Guide • 2015-2016

ting a 34 or higher on the ACT math section and 700 or higher on the SAT math section is 5.5%. How 
is this possible? If you knew your friend had an ACT math score of 35, what is the probability that your 
friend also scored higher than 700 on the SAT math section?

First we introduce a little notation. Let p(ACT) and p(SAT) represent the probabilities of scoring 34 or 
higher and 700 or higher on the math sections of the ACT and SAT, respectively. Therefore p(ACT) = 
0.08 and p(SAT) = 0.06.

Yet (0.08) · (0.06) = 0.0048, which implies that 0.48% of students who take both tests should score above 
the thresholds on both tests. This is vastly different from the actual probability of 5.5%. What accounts 
for this differential?

p(ACT and SAT) = p(ACT) · p(SAT) only if the two events are independent, but we anticipate there 
should be a great deal of crossover between students who scored well on the math section of the ACT 
and students who scored well on the math section of the SAT. Therefore, these events are dependent, and  
p(ACT and SAT) = p(ACT) · p(SAT|ACT). Substituting known values yields 0.055 = (0.08) · p(SAT|ACT), 
and so p(SAT|ACT) = 0.6875. This means the probability of scoring 700 or higher on the SAT math sec-
tion given a score of 34 or higher on the ACT math section is 68.75%. Therefore, if your friend scored 
34 or higher on the ACT math section but below 700 on the SAT math section, we might be somewhat 
surprised, but not totally shocked.

Notice that p(SAT|ACT) ≠ p(ACT|SAT). p(ACT and SAT) = p(SAT) · p(ACT|SAT) and so 0.055 = (0.06) 
· p(ACT|SAT) and p(ACT|SAT) = 0.9167. This means the probability of scoring 34 or higher on the ACT
math section given a score of 700 or higher on the SAT math section is 91.67%, so a high score on the
SAT math section without a high score on the ACT math section is fairly rare.

The differences between p(ACT and SAT), p(ACT), p(SAT), p(SAT|ACT), and p(ACT|SAT) may be more 
clear if we consider a table showing the breakdown of possible scenarios. Assume 100 people took both 
the ACT and SAT. Based on our given information, 8 people will have scored 34 or higher on the ACT 
math section, 6 will have scored 700 or higher on the SAT math Section, and 5.5 people will have scored 
higher than both of these cutoffs.

≥700 SAT Math < 700 SAT Math TOTAL
≥ 34 ACT Math 5.5 8

< 34 on ACT Math
TOTAL 6 100
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≥700 SAT Math < 700 SAT Math TOTAL
≥ 34 ACT Math 5.5 2.5 8

< 34 on ACT Math 0.5 91.5 92
TOTAL 6 94 100

Fortunately, we have enough information to complete the entire table.

Now the difference between p(SAT|ACT) and p(ACT|SAT) may be more clear. When we calculate 
p(SAT|ACT), the probability of a high score on the SAT given a high score on the ACT, we are consid-
ering only students who already had a high score on the ACT math section, so the probability is      = 
0.6875. When we calculate p(ACT|SAT), the probability of a high score on the ACT given a high score 
on the SAT, we are considering only students who already had a high score on the SAT math section, so 
the probability is        = 0.9167.

Once we are comfortable calculating the probability of a specific outcome within a scenario, we turn our 
attention to considering all of the possible outcomes for a given situation. When making decisions, we are 
usually confronted with an array of possible outcomes, each of which has a particular value and a particu-
lar probability. How can we determine which course of action is the most mathematically sound? In this 
section, we will consider how to determine the appropriate choice given events with different probabilities 
and different outcomes.

In order to be a probability distribution, all possible outcomes must be represented with a valid probability.   
This means the distribution must satisfy two of the basic probability principles:

(1) The probability of each event is a number between 0 and 1.

(2) The sum of all probabilities must equal 1.

5.5
6

5.5
8

A probability distribution is a set of outcomes and the probability of those outcomes where the 
probability of each event is a number between 0 and 1, and the sum of the probabilities from all 
outcomes equals 1. Symbolically, if there are m different outcomes, for all events Ei within the 
probability distribution, 0 ≤ p(Ei ) ≤ 1 and     p(Ei ) = 1.

m

i=1
∑
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As an example, we can build a probability distribution for the lottery situation from the previous section. 
It was determined that the probability of buying a ticket and winning the lottery was               , the prob-
ability of buying a ticket and not winning the lottery was            , the probability of not buying a ticket 
and winning the lottery was 0, and the probability of not buying a ticket and not winning the lottery was 
    . As each probability is between 0 and 1 (inclusive) and the sum of all the probabilities is 1, this is a valid 
probability distribution. Often we display probability distributions in tables.

1
180,000

59,999
180,000

2
3

Ei ticket and win ticket and not win no ticket and win no ticket and not win

P(Ei)
1

180,000
59,999

180,000 0
2
3

But, knowing the probabilities does not give us enough information to make a mathematically sound 
decision. We also need to know the outcome associated with each event; it should make a difference if a 
winning lottery ticket is worth $10 or $1,000. This leads us to our discussion of expected value.

Suppose the lottery ticket costs $3, but a winning lottery ticket is worth $15,000. Is it worth playing this 
lottery? Paying $3 for a chance at $15,000 seems like a fairly tempting lottery ticket, but the probabilities 
of winning and losing need to be taken into account as well.

Let’s pretend we simulate this scenario many, many times—say 360,000 times. What do we anticipate 
occurring? If we decided whether or not to play the lottery 360,000 times, we would expect to have 2 
winning lottery tickets to go along with 119,998 losing lottery tickets. Additionally, we would have de-
cided not to play the lottery 240,000 times.

Ei ticket and win ticket and not win no ticket and win no ticket and not win

P(Ei)
1

180,000
59,999

180,000 0
2
3

# of 
times 2 119,998 0 240,000

PAYOFF $29,994 $–359,994 $0 $0

Two winning lottery tickets worth $30,000 (less the $6 these two tickets cost) seems really nice, until we 
realize that we lost over $350,000 in order to purchase those two lottery tickets. It turns out this is a ter-
rible lottery to play.
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Using this information, we can determine the value of an average lottery decision. Since all 360,000 deci-
sions had a total value of $–330,000, the mean value for a decision is               = $–0.91667. Therefore, on 
average each time a decision is made in this scenario, the outcome is to lose about 92 cents. This average 
outcome is called the expected value.

$–330,000
360,000

The expected value of a probability distribution is the mean payoff expected from the probability 
distribution over a long enough period of time.

Like the mean of a data set, it is possible for the expected value to not be a possible outcome. In the lot-
tery example, there are only three possible outcomes for an individual decision: $15,000, $–3, or $0. The 
expected value of $–0.916 is also based on the decision of whether or not to play the lottery being random, 
and that a ticket is purchased      of the time and not purchased      of the time. Most people do not ran-
domly decide whether to play the lottery. In this situation, since one can control whether or not to purchase 
a ticket, the choice made should always be to not buy a ticket, as this creates an outcome higher than the 
expected value.

For this lottery, how much does a winning lottery ticket need to be worth for it to be worthwhile for people 
to choose to play the lottery? Randomly deciding whether or not to play the lottery 360,000 times resulted 
in a total cost of $359,994 from losing lottery tickets and only two winning tickets. In order to make people 
want to play the lottery, the two winning tickets need to be worth more than $359,994 combined. So, if a 
winning lottery ticket gains the purchaser $179,997, the expected value for this situation is $0, and it does 
not matter if we purchase a lottery ticket or not. Therefore, a winning lottery ticket needs to be worth more 
than $180,000 (remember they still cost $3) in order to create a positive expected value. At that point, 
people should choose to play the lottery because they expect to get back more money than they spend in 
the long run.

This example illustrates the concept of a fair game.

2
3

1
3

A fair game is a probability distribution with an expected value of 0.
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Keep in mind that the expected value of a probability distribution is the average outcome over a long pe-
riod of time with many, many trials. Expected values that are slightly negative still represent very large 
losses over a long period of time. Lotteries and casinos will set up games with a slightly negative expected 
value. Although this means some players may make money in the short run, in the long run the casinos 
will take in more money than they pay out. Indeed, allowing a few players to win money probably will 
cause more people to gamble more often!

So, how do we calculate expected value? Let’s look at another example with an eye toward generalizing 
the process to find a formula. A local casino introduces a new game, Snake Eyes, which is advertised for its 
ease of play. The gambler pays $2 to roll a pair of dice numbered 1–6. The payout is based on the sum of 
the two dice as follows:

A sum of 2 pays the gambler $100.

A sum of 10 gives the gambler $2 (so the play was free).

A sum of 11 gives the gambler $10.

A sum of 7 causes the gambler to have to pay $1 more.

All other sums result in nothing happening (the gambler effectively loses $2).

Should gamblers play this game?

To determine whether or not this game should be played, we need to find the expected value. A positive 
expected value means that over time, gamblers will win more money than they lose, whereas a negative 
expected value means gamblers will lose more money than they win. Let’s imagine the game being played 
a large number of times, and let’s select a multiple of 36, so our calculations come out nicely. If this game 
is played 720 times, what should occur?

A sum of 2 should occur       · 720 =  20 times, for a payout of 20 · 98 = $1,960. (Don’t forget that it costs 
$2 to play!)

A sum of 10 should occur       · 720 = 60 times, for a payout of $0.

A sum of 11 should occur       · 720 = 40 times, for a payout of 40 · 8 = $320.

A sum of 7 should occur       · 720 = 120 times, for a payout of –$360.

All other sums should occur       · 720 = 480 times, for a payout of 480 · (−2) = –$960.

1
36

3
36

2
36

6
36

24
36
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All together, the expected payout is $1,960 + $0 + $320 + (–$360) + (–$960) = $960. As it took 720 turns 

to accumulate this amount, the expected value is          = $1.33 per play. This is an extremely good expected 

value for a gambler, and someone at the casino is probably going to lose his/her job for designing a game 

with such a high expected value.

How did we find this expected value? We first determined the expected occurrence of each outcome by 

multiplying the probability of that outcome by the total number of plays, in this case 720. Then, each 

number of occurrences was multiplied by the payout for that outcome, and all of these total payouts were 

added together. Then, we divided the total amount of money by 720, the total number of plays, to de-

termine the average payout for one game. These calculations, without evaluating as we go, look like this: 

                                                                 .

But, each of the terms in the numerator contains a factor of 720, which can be factored out to give us: 

           =                                                               .

But, this is just the probability of each outcome multiplied by the value of the outcome, and then 

the sum of these products. Indeed, for any number of trials, we would multiply the number of trials 

by the probability of each outcome to find the number of occurrences, and then multiply the num-

ber of occurrences by the value of these outcomes. This would be done for each outcome, and then 

we would add together the results and divide by the number of outcomes to find the average. Sym-

bolically, if n represents the number of trials and there are m different possible outcomes, we have: 

                                                                                    .

Since there is a factor of n in all of these terms, these can be canceled, and the computation can be written 

as: p(E1) · E1 + p(E2) · E2 + p(E3) · E3 + … + p(Em ) · Em.

So, the expected value of a probability distribution is a weighted sum of all the possible outcomes, where 

the weight of each outcome is the probability of that outcome. But, this also looks a lot like a series! We 

can use sigma notation to write the final version of the formula.

960
720

       · 720 · 98 +      · 720 · 0 +      · 720 · 8 +      · 720 · (–3) +      · 720 · (–2)

720

1
36

3
36

2
36

6
36

24
36

720 · [      · 98 +       · 0 +      · 8 +      · (–3) +      · (–2)]
720

1
36

3
36

2
36

6
36

24
36

      · 98 +       · 0 +      · 8 +      · (–3) +      · (–2)1
36

3
36

2
36

6
36

24
36

p(E1) · n · E1 + p(E2) · n · E2 + p(E3) · n · E3 + … + p(Em ) · n · Em
n

mathResource.indd   120 10/15/2014   10:59:27 PM

U
SA

D
 - 

Sa
nt

a 
An

a,
 C

A

N
or

th
w

es
t P

a.
 C

ol
le

gi
at

e 
A

ca
de

m
y 

- 
E

rie
, P

A



2018–2019 Mathematics Resource Guide
120

121USAD Mathematics Resource Guide • 2015-2016

Let’s use this formula to determine the expected value of the lottery situation from the beginning of our 

discussion. We already know the expected value of the probability distribution is $–0.91667, so our new 

formula needs to give us the same value in order for us to feel confident that this formula is correct.

In our lottery situation, there are four possible outcomes. The first outcome, E1, is buying a ticket and win-

ning the lottery, so E1 = 14,997. This has a probability of                 .

The second outcome, E2, is buying a ticket and not winning the lottery, so E2 = –3. This has a probability 

of                .

The third event, not buying a ticket and winning the lottery, has a probability of 0. Since this event cannot 

occur, we will omit this from our probability distribution.

The third outcome, E3, is not buying a ticket and not winning the lottery, so E3 = 0. This has a probability 

of     .

Using our formula for expected value, E =     p(Ei) · Ei , gives us             · 14997 +              · −3 +     · 0

= –0.91667, as predicted! So, our expected value formula works the way we want it to, and measures what 

we set out to measure.

Having a measure of central tendency for a probability distribution is very nice, but as soon as we can 

measure the mean of a probability distribution, we start to wonder: can we measure the variation of a 

probability distribution as well?

The expected value of a probability distribution with m different outcomes E1, E2, … Em, each with 

a corresponding probability of occurrence p(E1), p(E2), … p(Em), has expected value     p(Ei) · Ei. 

The symbol we will use to denote the expected value of a probability distribution is E .

m

i=1
∑

59,999
180,000

1
180,000

2
3

m

i=1
∑ 1

180,000
59,999

180,000
2
3
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Expected value tells us the average value of a probability distribution and can help us determine whether or 
not to participate in a particular probability situation, like a lottery. If the expected value is positive, then 
in the long run we expect to have a positive return. Lotteries and casinos make sure the expected values 
of their games are negative, so they take in more money than they pay out. But probability distributions 
contain variation, just like collections of data. Being able to quantify this variation can help clever gamblers 
select which games to play since games with negative expected value but larger variations could create 
positive payoffs if played for a short period of time.

It seems the variance of a probability distribution should be calculated in a similar manner to the vari-
ance of a data set. Variance measures the average of the squared differences each value is from the mean: 

o  2 =                   . The variance of a probability distribution would need to take the probability of each out-

come into account as well. So, a probability distribution with m outcomes E1, E2, … Em , each probability
p(E1), p(E2), … p(Em ), and expected value E should have variance o  2 = (E1 − E)2 · p(E1) + (E2 − E)2 · p(E2)
+ … + (Em − E )2 · p(Em ). This can be written in sigma notation as o  2 =     (Ei − E )2 · p(Ei).

n

i=1
∑ (xi – x)2

n

m

i=1
∑

The variance of a probability distribution is the sum of the squares of the differences between 

each outcome and the expected value multiplied by the probability of each outcome. Symbolically,   

o  2 =    (Ei − E )2 · p(Ei).
m

i=1
∑

As we might expect from our earlier work with variance and standard deviation, the standard deviation of 
a probability distribution is the square root of the variance.

The standard deviation of a probability distribution is the square root of the variance of a probabil-

ity distribution. Symbolically, o   =                               .√(Ei − E )2 · p(Ei)
m

i=1
∑
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ExamplE 3.4a: The expected value of the lottery situation from the previous section was 

$–0.91667.  Find the variance and standard deviation for this probability distribution.

Solution: For the lottery situation, E1 = 14,997, so E1 − E   = 14,997.91667, and (E1 − E  )2 = 224,937,504.44.

This has a probability of                  and so (E1 − E)2 · p(E1) = 1249.653.

E2 = –3, so E2 − E  = −2.0833, and (E2 − E  )2 = 4.3403. This has a probability of            and so  

(E2 − E  )2 · p(E2) = 1.4467.

E3 = 0, so E3 − E  = 0.91667, and (E3 − E  )2 = 0.8402. This has a probability of      , and so (E3 − E  )2 · p(E3)

= 0.5601.

Therefore, the variance for this probability distribution is 1249.653 + 1.4467 + 0.5601 = 1251.6598, 

and the standard deviation is                       = 35.378.

1
180,000

59,999
180,000

2
3

1251.6598√                    

Why would we want to calculate the variance and standard deviation for a probability distribution? One 
reason is that once we know the mean, variance, and standard deviation for two probability distributions, 
we can compare the relative likelihood of two outcomes in different probability distributions using z-scores 
in the same way we used z-scores to compare the relative position of two data points in two different sets 
of data.

ExamplE 3.4b: What is the z-score of winning the lottery in Example 3.4a? What is the z-

score of playing the lottery and not winning?

Solution: With a standard deviation of 35.378 and an expected value of –0.91667, an outcome of 

winning $14,997 has the incredibly high z-score of                                    = 423.933. Not winning the lot-

tery, on the other hand, has a much more reasonable z-score of                            = −0.059.

14,997 – (–0.91667)
35.378

–3 – (–0.91667)
35.378

ExamplE 3.4c: What is the variance and standard deviation for Snake Eyes as described in 

the previous section?
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Solution: Recall the rules for Snake Eyes: the gambler pays $2 and rolls a pair of dice. The sum of the 

two dice determines what happens:

A sum of 2 pays the gambler $100. This has a probability of        .

A sum of 10 gives the gambler $2 (so the play was free). This has a probability of        .

A sum of 11 gives the gambler $10. This has a probability of        .

A sum of 7 causes the gambler to have to pay $1 more. This has a probability of        .

All other sums result in nothing occurring (so the gambler loses $2). This has a probability of        .

The expected value for this game was previously determined to be 1.33. Therefore, the variance for 

this probability distribution is:

(98 −1.33)2 ·       + (0 −1.33)2 ·       + (8 −1.33)2 ·        + [(−3) −1.33]2 ·      + [(−2) −1.33]2 ·       = 272.722.

The standard deviation for this probability distribution is therefore                    = 16.514.

1
36

3
36

2
36

6
36

24
36

1
36

3
36

2
36

6
36

24
36

√                    272.722

The z-score for playing Snake Eyes and winning $98 is therefore         = 5.854, still a fairly high  

z-score, but far better than the astronomical z-score for winning the lottery of 423.933. The calculations

for standard deviation and expected value take the probability of winning and the payout into account as

well, so even with these factors controlled for, playing Snake Eyes and hoping for the best payout is a far

more reasonable thing to do than playing the lottery and hoping for the $15,000 payoff.

Unlike mean, variance, and standard deviation for data, most calculators and computer programs do 

not have a command or shortcut for calculating the expected value, variance, and standard deviations of 

probability distributions. Although calculating expected value using a calculator or spreadsheet is fairly 

straightforward, the variance formula we just used is somewhat cumbersome. Like the variance formula 

for data sets, there is an alternative form for the variance formula that may be somewhat easier to use for 

calculations. We will conclude this section with its derivation.

Consider o 2 =     (Ei − E )2 · p(Ei) , where E is the expected value of the probability distribution. Writing

out a few terms to get a feel for this calculation gives us: (E1 − E )2 · p(E1) + (E2 − E )2 · p(E2) + (E3 − E )2 

· p(E3) + … + (Em − E )2 · p(Em ).

98 – 1.33
16.514

m

i=1
∑
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Expanding each of the binomials and distributing each p(Ei) gives us what looks like a mess at first:

E1 2 · p(E1) − 2E1E · p(E1) + E2 · p(E1) + E2 2 · p(E2 ) − 2E2E · p(E2 ) + E2 · p(E2 )

+ E3 2 · p(E3 ) − 2E3E · p(E3 ) + E2 · p(E3) + … + Em 
2 · p(Em ) − 2EmE · p(Em ) + E2 · p(Em )

This looks pretty ugly. Let’s regroup and place all the terms that look like E1 2  · p(E1) together, all the terms 
that look like −2E1E · p(E1)together, and all the terms that look like E2 · p(E1) together:

  E1 2 · p(E1) + E2 2 · p(E2) + E3 2  · p(E3) + … + Em 2  · p(Em )

 − 2E1E · p(E1) − 2E2E · p(E2) − 2E3E · p(E3) − … − 2EmE · p(Em )

+ E2 · p(E1) + E2 · p(E2 ) + E2 · p(E3) +…+ E2 · p(Em )

Now let’s try to simplify using sigma notation. The first set can be written as     Ei 2 · p(Ei ). In the second 
set, each term contains a common factor of –2 and E , so once these are factored out, this can be written 
as −2E ·    Ei · p(Ei ). In the third set, each term contains a common factor of E2, and so these terms can 

be written as E2 ·    p(Ei ).

Therefore, we have: o 2 =    (Ei − E)2 · p(Ei)

     =    Ei
2 · p(Ei) −2E ·    Ei · p(Ei ) + E2 ·    p(Ei ).

But    Ei · p(Ei ) is the expected value of the probability distribution, so    Ei · p(Ei ) = E. And     p(Ei) is 
asking for the sum of all the probabilities in the distribution, which we know equals 1! Therefore, this 
simplifies further, to:

     =    Ei
2 · p(Ei ) − 2E2 + E2 =    [Ei

2 · p(Ei )] − E2.

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

m

i=1
∑

The variance of a probability distribution with m outcomes E1, E2, … Em, each with a correspond-
ing probability of occurrence p(E1 ), p(E2 ), … p(Em) and an expected value of E can be calculated 

using the following formula: o 2 =     [Ei 
2 · p(Ei )] − E2.

m

i=1
∑
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Probability distributions are an extremely important foundational concept in statistics. Many different 
types of probability distributions are studied and developed in statistics, but all probability distributions 
are governed by the rules and formulas we have discussed thus far. Now that we have some familiarity with 
probability distributions, we will turn our attention to two of the most important probability distributions 
in statistics: the Binomial Distribution and the Normal Distribution.

The Binomial Distribution is an important probability distribution in statistics because it lays the ground-
work for the Normal Distribution. It turns out, perhaps not surprisingly, that the Binomial Distribution in 
statistics is closely related to the algebraic Binomial Expansion Theorem. In this section of the Mathemat-
ics Resource Guide, we will develop the Binomial Distribution, consider its relationship to the Binomial 
Expansion Theorem, and determine the expected value, variance, and standard deviation of the Binomial 
Distribution. In the last section of the resource guide, we will consider how the Binomial Distribution 
leads into the Normal Distribution.

Let’s consider an example. On your way into biology class, you suddenly remember there is a 10-question 
quiz today on the assigned reading. Having completely forgotten about the quiz, you are forced to guess 
on all 10 questions. Each question is multiple-choice with four possible choices, one of which is correct. 
What is the probability that you will pass the quiz with a 60% or better?

The probability of guessing any one of the questions correctly is 25%, or 0.25, and the probability of get-
ting a question incorrect is 0.75. Since the probability of guessing the first question correctly is indepen-
dent of guessing the second question correctly, we can multiply the probabilities we want together (without 
having to worry about conditional probabilities). So, the probability of getting exactly 6 of the 10 ques-
tions correct seems to be (0.25) · (0.25) · (0.25) · (0.25) · (0.25) · (0.25) · (0.75) · (0.75) · (0.75) · (0.75) =  
(0.25)6 · (0.75)4. But, this assumes that the first six questions were answered correctly and the last four 
questions were answered incorrectly, which does not have to be the case. Any six of the ten questions could 
have been answered correctly, and any four of the ten could be answered incorrectly. So, clearly there are 
more possibilities than ccccccwwww. A few others could be:

cccccwcwww

ccwwccwwcc

wcwcwcwccc
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This lineup representation looks familiar! As long as six of the ten spots are selected for c (getting that 
question correct), then this is a valid set. The spots are selected without replacement, and the order of selec-
tion doesn’t matter, so this is a combination!

Therefore, there are        = 210 different ways you could guess 6 of the 10 questions on the quiz correctly, 

and the total probability of getting 6 out of the 10 questions correct is       · (0.25)6 · (0.75)4 = 0.01622, or 

1.622%. This doesn’t seem like a very promising chance to pass the quiz.

But wait! This is the probability of getting exactly 6 of the 10 questions correct. Getting more than 6 ques-
tions correct also counts as a passing grade! So, you could also get 7, 8, 9, or 10 questions correct.

Fortunately, these probabilities are very close in structure to the probability of getting 6 out of 10 correct.

Unfortunately, none of these outcomes are very likely.

The probability of getting 7 out of 10 correct is        · (0.25)7 · (0.75)3 = 0.00309.

The probability of getting 8 out of 10 correct is       · (0.25)8 · (0.75)2 = 0.00038.

The probability of getting 9 out of 10 correct is        · (0.25)9 · (0.75)1 = 0.000028.

And, the probability of getting all 10 correct is the astronomically low        · (0.25)10 · (0.75)0 = .00000095.

Therefore, the probability of getting 6 or more questions correct out of 10 is the sum of these probabili-
ties,  or 0.019727. So, there is only a 1.9727% chance of passing the quiz when guessing on every problem. 
Ouch! Better remember to study for the quiz next time!

Hopefully the similarity to the Binomial Expansion Theorem is clear, as each probability resembles a term 

in the expanded form of (x + y)n :         · xk · yn−k . For this example, n = 10, x = 0.25, y = 0.75, and k is ranging 

from 6 to 10. Notice that x + y = 1 since each question is either guessed correctly or incorrectly. This is an 
important characteristic of the Binomial Distribution—each event can be classified as having two possible 
outcomes: success or failure. In this example, even though there are four choices for each multiple-choice 
question, each question is scored right or wrong.

Let’s look at another example before we generalize.
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ExamplE 3.5a: In your math class, students are arranged into groups of four, and each day 

homework points are awarded to all members of a group or no members of a group. In 

order for the group to receive credit for the homework assignment, at least three members 

of the group need to complete the daily assignment. Assuming each group member has 

a 70% chance of completing the assignment on any given day, what is the probability a 

group earns credit for the homework on a single day?

Solution: In order for the group to earn credit on the homework, either three or four of the group 

members need to complete the assignment. The probability of three group members completing 

the assignment is        · (0.7)3 · (0.3)1 = 0.4116, and the probability of all four group members complet-

ing their assignment is         · (0.7)4 · (0.3)0 = 0.2401. Therefore, the probability of either three or four

group members completing the daily assignment is 0.6517, and there is a 65.17% chance that a 

group will earn credit for the homework on any given day.

4
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

Based on our examples, it seems we are ready to generalize.

A situation can be modeled using the Binomial Distribution if the following criteria hold: each 
outcome is made up of a series of independent events, these events can be classified as a success or 
a failure, and the probability of success is constant across events. Given a probability of success p 
and a probability of failure q for each event, the probability of k successes out of n events is given by 

the formula P(k successes out of n events) =       · pk · qn−k. Note that since p is the probability of success 

and q is the probability of failure, p + q = 1. Also notice that with n events, there are n + 1 different 
possible outcomes, since it is possible for the event to occur 0 out of n times.

n
k











The similarity to the Binomial Expansion Theorem is hopefully clear. Indeed, we can use this connection 
to the Binomial Expansion Theorem to prove that the Binomial Distribution is a probability distribution.
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In order to be a probability distribution, the Binomial Distribution must satisfy two important properties:  
each outcome must have a probability between 0 and 1 (inclusive), and the sum of the probabilities of all 

outcomes must be 1. Symbolically, 0 ≤       · pk · qn−k ≤ 1 and         · pk · qn−k = 1. We will prove the latter

condition first, and then we will use that result to prove the first condition.

In order to show that          · pk · qn−k = 1, we use the Binomial Expansion Theorem: (x + y)n =           · xk ·

yn−k. Substituting p for x and q for y gives us (p + q)n =         ∙ pk ∙ q n−k. But, since p represents the probability

of success and q represents the probability of failure, p + q = 1. Since 1n = 1, we have 1 =          · pk · qn−k as

desired.

Now that we know that the sum of all probabilities from all outcomes from the Binomial Distribution is 1, 
we will use this to show that each individual probability is between 0 and 1. First we will show that all the 

probabilities are non-negative. Since each probability is given by          ·  pk · qn−k, we can determine that this 

probability is non-negative by showing that none of the three terms in the product are negative.        relies 

on a computation from factorials, none of which will be negative, and p and q are probabilities, which will 
also be non-negative. Since an integer power of a non-negative number remains non-negative, both p k and 
q n−k are non-negative, and the product of three non-negative numbers is also non-negative.

This is true for all outcomes in a given Binomial Distribution. But, we know that the sum of all possible 
outcomes for a Binomial Distribution is 1, and if each term is non-negative, this implies that each of the 
terms is also less than 1, as desired. (If the sum of all the terms is 1, the only way one or more of them could 
be larger than 1 is to have some negative terms to lower the sum back to 1, but we have shown none of the 
terms are negative.) Therefore, the Binomial Distribution is a probability distribution.
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It has been proven that the Binomial Distribution is a probability distribution.

If the Binomial Distribution is a probability distribution, we should be able to find the expected value, 
variance, and standard deviation for the Binomial Distribution.
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ExamplE 3.5b: Find the expected value, variance, and standard deviation of the number of 

heads that will occur if 8 fair coins are flipped.

Solution: First we note that this situation can be modeled using the Binomial Distribution since 

each outcome (getting a certain number of heads) is made up of independent events (each coin is 

independent of the others), the events can be modeled with success or failure (heads is success, tails 

is failure), and the probability of success remains constant across events (the probability of getting a 

head on each coin is    ). In order to find the expected value, we need to determine each outcome 

and the probability of each outcome.

1
2

# of heads Binomial 
ProBaBility

decimal 
ProBaBility p(Ei) · Ei Ei

2 · p(Ei)

0       · (.5)0 · (.5)8 0.00390625 0 0

1      · (.5)1 · (.5)7 0.03125 0.03125 0.03125

2       · (.5)2 · (.5)6 0.109375 0.21875 0.4375

3       · (.5)3 · (.5)5 0.21875 0.65625 1.96875

4       · (.5)4 · (.5)4 0.273438 1.09375 4.375

5       · (.5)5 · (.5)3 0.21875 1.09375 5.46875

6       · (.5)6 · (.5)2 0.109375 0.65625 3.9375

7       · (.5)7 · (.5)1 0.03125 0.21875 1.53125

8       · (.5)8 · (.5)0 0.00390625 0.03125 0.25

total 1 4 18
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Not surprisingly, the expected value of this probability distribution is 4, since we would expect to 

get 4 heads when we flip 8 coins “on average.”

This idea leads us to hypothesize the following result.

The expected value of a binomial distribution with n events and probability of success p on each 
event is E = n · p.

The last column in the table for Example 3.5b shows Ei
2 · p(Ei), which is used in the alternative form of 

the variance formula for a probability distribution. Since     Ei
2 · p(Ei) = 18 and E = 4 , the variance of this 

probability distribution is 18 – 42 = 2, and therefore the standard deviation of this probability distribution 
is √2. This leads us to hypothesize the following result.

m

i=0
∑

The variance of a binomial distribution is o 2 = n · p · q. The standard deviation of a binomial distri-
bution is o  =             .√           n · p · q

We will prove the formula for expected value, but will leave the proof of the variance formula as an  
exercise.

Since expected value equals     p(Ei) · Ei , and p(Ei) =      · pk · q n−k in a Binomial Distribution, we are in-

terested in computing     k ·       · pk · q n−k . Writing out a few terms to get the feel for how this looks yields: 

0 ·       · p0 · q n + 1 ·       · p1 · q n−1 + 2 ·       · p2 · q n−2 + 3 ·       · p3 · q n−3 + … + n ·       · pn · q0
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ExamplE 3.5b: Find the expected value, variance, and standard deviation of the number of 

heads that will occur if 8 fair coins are flipped.

Solution: First we note that this situation can be modeled using the Binomial Distribution since 

each outcome (getting a certain number of heads) is made up of independent events (each coin is 

independent of the others), the events can be modeled with success or failure (heads is success, tails 

is failure), and the probability of success remains constant across events (the probability of getting a 

head on each coin is    ). In order to find the expected value, we need to determine each outcome 

and the probability of each outcome.

1
2

# of heads Binomial 
ProBaBility

decimal 
ProBaBility p(Ei) · Ei Ei

2 · p(Ei)

0       · (.5)0 · (.5)8 0.00390625 0 0

1      · (.5)1 · (.5)7 0.03125 0.03125 0.03125

2       · (.5)2 · (.5)6 0.109375 0.21875 0.4375

3       · (.5)3 · (.5)5 0.21875 0.65625 1.96875

4       · (.5)4 · (.5)4 0.273438 1.09375 4.375

5       · (.5)5 · (.5)3 0.21875 1.09375 5.46875

6       · (.5)6 · (.5)2 0.109375 0.65625 3.9375

7       · (.5)7 · (.5)1 0.03125 0.21875 1.53125

8       · (.5)8 · (.5)0 0.00390625 0.03125 0.25

total 1 4 18
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The first term will clearly equal 0, so we remove it, giving us:

1 ·       · p1 · q n−1 + 2 ·       · p2 · q n−2 + 3 ·       · p3 · q n−3 + … + n ·       · pn · q0

Each of these terms contains a factor of p, which seems helpful. Factoring p out yields:

p · [ 1 ·       · p0 · q n−1 + 2 ·       · p1 · q n−2 + 3 ·       · p2 · q n−3 + … + n ·       · pn-1 · q0]
We know we are looking for n · p , so we are looking for a factor of n as well. There is a factor of n in-

side each       , since        =           , and so we can rewrite this as                 in order to factor out the n: 

np · [1 ·               · p0 · q n−1 + 2 ·               · p1 · q n−2 + 3 ·               · p2 · q n−3 + … + n ·            · pn–1 · q0]
Now that the combinations are broken up, it seems we can reduce each fraction a bit more. For example,  

3 ·              has a factor of 3 in the numerator and denominator, so this can be rewritten as              . In 

general, k ·               can be rewritten as                     , and so now we have:

np · [             · p0 · qn−1 +               · p1 · qn−2 +                · p2 · qn−3 + … +                 · pn−1 · q0]
What is left inside the brackets looks suspiciously like a Binomial Distribution: powers of p count up, 
powers of q count down, and these are multiplied by strange factorial coefficients. If we could write these 

coefficients as combinations, then we really would be getting somewhere. The first coefficient,               , is 

           , and the last coefficient is            , so maybe these can all be written as n – 1 choose something?

Our general coefficient is               and if this is going to be written as n – 1 choose something, 

it looks like that something needs to be k – 1. Does this work?          =                        , and since  

(n – 1) – (k – 1) = n – k,             =                   . Success! We can now rewrite our main line of work as:

np · [           · p0 · q n−1 +             · p1 · q n−2 +             · p2 · q n−3 + … +             · pn–1 · q0]
Now this can more clearly be rewritten as a Binomial Distribution: np ·                · pk · q n–1–k 

And by the Binomial Expansion Theorem,                · pk · q n–1–k = (p + q)n-1. But this is a Binomial Distribu-
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We also note the symmetry of the probabilities for the number of heads from 0 to 8. The most likely out-
come is 4 although this does not occur as frequently as we might think, at “only” 27.347% of the time. The 
outcomes of 3 and 5 are next most likely, followed by 2 and 6, 1 and 7, and 0 and 8 being fairly rare, as we 
might anticipate. This type of symmetry causes the mean, median, and mode of the number of heads to 
be the same value. This is an important characteristic of the most important distribution in statistics: the 
Normal Distribution.

Many people have heard of the bell curve, the all-important graph in statistics. This is the graph of the 
Normal Distribution. The Normal Distribution is symmetric, with equal mean, median, and mode. The 
Normal Distribution is also a probability distribution, and therefore the sum of all the probabilities in 
the Normal Distribution is 1. There is one important difference between the Normal Distribution and 
the probability distributions we have been considering thus far, however. The probability distributions we 
have been looking at only have a finite number of outcomes, and each occurrence within that probability 
distribution fits nicely into one of the different possible outcomes. These types of probability distributions 
are called discrete because each outcome is a different possibility. For example, the Binomial Distribution 
is a discrete probability distribution since when we flip 8 coins we can get 0 though 8 heads, but not 4.5 
heads.

The Normal Distribution, on the other hand, is a continuous probability distribution, which means that 
when we use the Normal Distribution, we are considering the possibility of any outcome. The Normal 
Distribution is most often used to model naturally occurring data, such as the heights of adults. These 
heights are continuous since heights of, say, 70.23 inches are possible and in theory have no upper or lower 
bounds.

The fact that the Normal Distribution is continuous means calculating exact probabilities requires so phis-
ticated calculus at the entry level and becomes extremely difficult and mathematically dicey at the more

tion, so p + q = 1, and               · pk · q n–1–k = 1. Therefore,

    k ·      · pk · q n–k

= np ·                 · pk · q n–1–k

= np · (p + q)n−1 = np · 1n−1 = n · p, as desired!
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difficult levels. We will leave these calculations to upper level undergraduate (or possibility low-level grad-
uate) courses in statistics and encourage the interested readers who are well versed in calculus to take up 
this line of thought. In this Mathematics Resource Guide, we will take a more concrete track of using the 
Binomial Distribution to approximate the Normal Distribution. This means we won’t be able to find the 
exact probabilities we are looking for, but thanks to the advent of computing technology, we’ll be able to 
get pretty close (close enough for statistics, anyway!).

But what probabilities are we even trying to calculate? The Normal Distribution models naturally occur-
ring data, like IQ scores or heights of trees or weights of animals. What are we trying to calculate the prob-
ability of across all of these scenarios? We need a way to standardize our question, so we can apply it across 
a variety of contexts and situations. This is where the concept of the z-score finally comes in handy.

One of the big payoffs for the Normal Distribution is that it allows us to make the connection between 
z-scores and probabilities. Recall that a z-score measures how many standard deviations a particular data
value is above or below the mean. If we can use the Normal Distribution to determine the likelihood of
a particular data value being a certain number of standard deviations above or below the mean, we can
tell how likely it is that a person has a particular IQ score or the likelihood of finding a tree that is 25 feet
high or a pig that weighs 850 pounds without testing every person for their IQ or measuring the height of
every tree or weighing every pig. The Normal Distribution, coupled with the concept of z-score, can allow
us to bypass our initial definition of probability, p(E) =                                               . Although this is a

wonderful mathematical definition for probability, it is very awkward and cumbersome to use in a real-life
scenario, where finding the total number of outcomes may be extremely difficult or impossible.

So how can we determine the probability of having a particular z-score? We will use the Binomial Distri-
bution with p = 0.5 to approximate the Normal Distribution by letting n become an extremely large num-
ber. (Note that this is not how statisticians calculate these values—they use calculus.) Let’s say we want to 
know the probability of being within one standard deviation of the mean, so a z-score between –1 and 1, 
inclusive. Since we know the mean (expected value) of the Binomial Distribution is n · p and the standard 
deviation is               , we can find the probability of a result within one standard deviation of the mean for 
subsequently larger and larger values of n. This will eventually approximate the probability of being within 
one standard deviation of the mean under the Normal Distribution.

We will select values of n that result in whole numbers for n · p and               in order to make it easier to 
locate the boundaries of being within one standard deviation of the mean. The first such value is n = 16, 
which since p = 0.5 gives an expected value of 8 and a standard deviation of 2. Therefore, we are interested 
in the probability of getting between 6 and 10 successes out of 16, using a Binomial Distribution with  

number of ways event E can occur
total number of outcomes

√         n · p · q

√         n · p · q
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p = q = 0.5. The probability of 6 out of 16 successes is       · (0.5)6 · (0.5)10, or        · (0.5)16. The probability 

of 7 successes is        · (0.5)16, the probability of 8 successes is       · (0.5)16, 9 successes is       · (0.5)16, and 

10 successes is        · (0.5)16. We would like to sum these probabilities, and therefore we write this calcula-

tion in sigma notation as           · (0.5)16. This has an approximate value of 0.7898864.  As the value of n 
is allowed to increase, the value of this summation should approach the probability of being within one 
standard deviation of the mean for the Normal Distribution. The results of several values of n are shown 
in the table below.

n E o E  ± o ∑ APPROxIMATE 
PROBABILITy

16 8 2 6 – 10          · (0.5)16 0.7898864

64 32 4 28 – 36           · (0.5)64 0.7395642

256 128 8 120 – 136              · (0.5)256 0.7120107

1024 512 16 496 – 528                · (0.5)1024 0.6975788

4096 2048 32 2016 – 2080                · (0.5)4096 0.6901923

16384 8192 64 8128 – 8256                  · (0.5)16384 0.6864555

65536 32768 128 32640 – 32896                  · (0.5)65536 0.6845620

262144 131072 256 130816 – 131328                     · (0.5)262144 0.6836337
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As n increases, the change in the probability of being within one standard deviation of the mean is de-
creasing as well, so it seems at n = 262,144 we are fairly close to the actual value of being within one stan-
dard deviation of the mean. Therefore, we will say that approximately 68% of data values lie within one 
standard deviation of the mean under the Normal Distribution.

What about the percentage that lies within two standard deviations of the mean, or three standard devia-
tions of the mean? Using n = 262,144 again, we can approximate these values as well. Since E = 131072 
and o  = 256, to be within two standard deviations, we need to be between 130,560 and 131,584 successes. 
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                  · (0.5)262144 ≈ 0.9547104, so we will say approximately 95% of data values fall within two

standard deviations of the mean under the Normal Distribution. For three standard deviations, we need 

to be between 130,304 and 131,840 successes, and as                      · (0.5)262144 ≈ 0.9973002, we will say

approximately 99.7% of data values fall within three standard deviations of the mean under the Normal 
Distribution.
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Under a Normal Distribution, approximately 68% of data values fall within one standard deviation 
of the mean, approximately 95% of data values fall within two standard deviations of the mean, and 
approximately 99.7% of data values fall within three standard deviations of the mean.

These percentages for the Normal Distribution are sometimes referred to as the Empirical Rule.

These percentages only hold for a Normal Distribution, and—like hidden assumptions of independent 
probabilities—data sets are often assumed to be normally distributed when they may not be normally dis-
tributed. When dealing with data collected from an experiment, use caution when assuming the data are 
normally distributed.

These probabilities, together with the idea that in a Normal Distribution half of the data values fall above 
the mean and half fall below the mean, allow us to answer the types of questions raised at the end of our 
discussion of z-scores earlier in the resource guide. Recall that a z-score measures the number of standard 
deviations a data value is above or below the mean. Therefore, we can restate the probabilities for the Nor-
mal Distribution in terms of z-scores.

For a data set that is normally distributed, approximately 68% of the data values will have z-scores 

between –1 and 1 (inclusive), approximately 95% of the data values will have z-scores between –2 

and 2 (inclusive), and approximately 99.7% of the data values will have z-scores between –3 and 3 

(inclusive).
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ExamplE 3.6a: Assume the average height of people in a major metropolitan area is 68.5 

inches, with a standard deviation of 2.5 inches. What approximate percentage of the popu-

lation is between 66 and 71 inches tall?

Solution: The z-score for 66 inches is –1, and the z-score for 71 inches is 1, so approximately 68% of 

the population is between 66 and 71 inches tall.

ExamplE 3.6b: In the same metropolitan area referred to in Example 3.6a, what is the prob-

ability of meeting someone who is 76 inches or taller?

Solution: The z-score for 76 inches using this mean and standard deviation is +3. We know that 

99.7% of the population should have z-scores between –3 and +3, so 0.3% of the population falls 

outside this range. But this 0.3% of the population has z-scores less than –3 or greater than +3, and 

we are interested only in those greater than +3. Therefore, the probability of meeting someone who 

is taller than 76 inches is 0.15%, half of 0.3%.

ExamplE 3.6c: In this same metropolitan area, how tall does someone need to be so that at 

least 2.5% of the population is shorter than they are?

Solution: Since 95% of z-scores are within 2 standard deviations of the mean, the bottom 2.5% are 

people whose z-score is less than –2. A z-score of –2 corresponds to a height of 63.5 inches, so a 

person who is 63.5 inches or taller will have at least 2.5% of the population shorter than they are.

We can hopefully see from these examples that there is a correspondence between a percentage and a 

z-score under a Normal Distribution. With the information presented here, we are only aware of this

correspondence for a few integer-value z-scores. Most z-scores, however, are not going to be nice integer

values like –3 or +2, so it seems a more general correspondence between z-scores like 1.4 or –2.37 and

percentages would be helpful. Indeed, this development is at the heart of undergraduate statistics, and it is

not our purpose here to explore this idea, but merely to point out the next logical step in this progression.
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As stated earlier, many naturally occurring variables do follow the Normal Distribution, but many data 
sets will not be normal. Indeed, most data collected are not from populations that follow the Normal Dis-
tribution. So why is the Normal Distribution so important? It turns out that even if the original set of data 
is not normally distributed, when small samples are taken from a data set and the distribution of sample 
means is considered, this distribution of sample means can be modeled by the Normal Distribution. This 
important idea is called the Central Limit Theorem. Again, a discussion of this theorem is beyond the 
scope of this guide, but we mention it here to give the reader some foresight into undergraduate statistics.

L  Measures of Central Tendency: The three measures of central tendency of a set of data are the 
mean, median, and mode.

L  Definition and Formula for the Mean: The mean of a data set is the value each data point would 
have if all data points were the same value. The mean of a set consisting of n values is given by 

x =         , where xi represents the ith data value.

L  Definition and Formula for the Median: The median of a data set is the value with the same 
number of data points above as below the value. If n is odd, the median is x   ; if n is even, the 

median is the mean of the two data values at the middle of the data:             .

L  Definition of the Mode: The mode is the data value that occurs the most frequently. If each value 
in the data set occurs once, the data have no mode. If two different data values each occur most 
frequently, they are both considered the mode, and the data set is called bimodal.

L  Mean and Median of a Finite Arithmetic Sequence: The mean and the median of a finite arith-
metic sequence are always equal.

L  Measures of Spread: The measures of the spread of a set of data are range, interquartile range, 
variance, and standard deviation.

L  Definition of Range: The range of a data set is the difference between the highest and lowest 
value.

L  Definition of Q3 and Q1: The lower quartile or first quartile (abbreviated Q1) is the median value 
of the data below the median in a set. The upper quartile or third quartile (abbreviated Q3) is the 
median value of the data above the median in a set.

n
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L  Definition of Interquartile Range: The interquartile range (IQR) of a data set is the difference 
between the third quartile (Q3) and first quartile (Q1).

L  IQR Test for Outliers: A data point xi is considered an outlier if xi > Q3 + 1.5· IQR or  
xi < Q1 −1.5 · IQR.

L  Definition and Formulas for Variance: The variance of a set of data is the average of the squared 
difference of each data point from the mean. Variance is denoted by the Greek letter sigma 

squared, written as o 2. In symbols, o 2 =                 . There are alternative formulas for the variance,  

including o 2 =                            and o 2 =                            .

L  Definition and Formula for the Standard Deviation: The standard deviation of a set of data, 
denoted by the Greek letter sigma, is the square root of the variance for the data: o  = √  o 2 . The ra-
tionale for taking the square root of the variance is to have a statistical measure with the same units 
as the original data.

L  Definition and Formula for the Z-Score: A z-score represents the number of standard deviations 

a particular data value is above or below the mean. A z-score is calculated by the formula z =       

L  Definition and Formula for Probability: The probability of an event occurring is the number of 
ways that event can occur divided by the total number of possible outcomes. The probability of an 
event E occurring is given by p(E), where p(E) =                                           .

L  Basic Properties of Probabilities: There are three basic properties of probabilities.

J   The probability of any event is a number between 0 and 1. An event with probability 0 is im-
possible, and an event with probability 1 is certain. In symbols, for any event E, 0 ≤ p(E) ≤ 1.

J   The probability of an event occurring plus the probability of the event not occurring is 1. The 
probability of an event E not occurring is called the complement of E and is denoted by E'. 
In symbols, p(E) + p(E') = 1.

J   In a given situation, the sum of the probabilities of all possible events must equal 1, since 
one of the possible events must occur. In symbols, if there are n different possible outcomes, 

     p(Ei) = 1.

n

i=1
∑ (xi – x)2

n
n

i=1
∑ xi

n

n

i=1
∑ xi 

2 – x ∙
n

i=1
∑ xi 

2 

n

i=1
∑ xi

n









 2

–
n

xi – x
o

number of ways event E can occur
total number of outcomes

n

i=1
∑
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L  Definition of Independent Events: Two (or more) events are called independent if the occurrence 
of one event does not affect the occurrence of the other event(s). When determining the probabili-
ties of each event, the events can be considered separately since there is no meaningful interaction 
between the events.

L  Probability of Independent Events: The probability of two (or more) independent events occur-
ring together is the product of the probabilities of each individual event. If there are two events A 
and B, this is written as p(A and B) = p(A) · p(B). If there are n events, this is written as p(E1 and 
E2 and … and En ) = p(E1 ) · p(E2 ) … p(En ).

L  Definition of Dependent Events: Two (or more) events are called dependent if the occurrence of 
one event does affect the occurrence of the other event(s). When determining the probabilities of 
each event, the events cannot be considered separately, as the events are connected in a meaningful 
way.

L  Probability for Dependent Events: The probability of two dependent events occurring together is 
the product of the probability of the first event occurring and the probability of the second event 
occurring given that the first event occurred. In symbols, if there are two events A and B, this is 
written as p(A and B) = p(A) · p(B|A).  p(A) represents the probability of event A occurring, and 
p(B|A), read aloud as “the probability of B given A,” represents the probability that event B occurs 
if event A has already occurred.

L  Definition of a Probability Distribution: A probability distribution is a set of outcomes where 
the probability of each event is a number between 0 and 1, and the sum of the probabilities from 
all outcomes equals 1. Symbolically, if there are m different outcomes, for all events Ei within the 

probability distribution, 0 ≤ p(Ei ) ≤ 1 and      p(Ei) = 1.

L  Definition and Formula for Expected Value: The expected value of a probability distribution is 
the mean payoff expected from the probability distribution over a long enough period of time. A 
probability distribution with m different outcomes E1, E2, … Em , each with a corresponding prob-

ability of occurrence p(E1 ), p(E2 ), … p(Em ), has expected value E =     p(Ei) · Ei .

L  Definition of Fair Game: A fair game is a probability distribution with an expected value of 0.

m

i=1
∑

m

i=1
∑
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L  Variance of a Probability Distribution: The variance of a probability distribution is the sum of 
the squares of the differences between each outcome and the expected value multiplied by the 

probability of each outcome: o 2 =     (Ei − E)2 · p(Ei) . The alternative formula for the variance of a 

probability distribution is o 2 =    [Ei
2 · p(Ei )] − E2.

L  Standard Deviation of a Probability Distribution: The standard deviation of a probability dis-

tribution is the square root of the variance of the probability distribution: o   =                           

or                                 .

L  Criteria and Formula for the Binomial Distribution: A situation can be modeled using the Bino-
mial Distribution if the following criteria hold: each outcome is made up of a series of independent 
events, these events can be classified as success or failure, and the probability of success is constant 
across events. Given a probability of success p and a probability of failure q for each event, the prob-

ability of k successes out of n events is given by the formula        · pk · qn−k. Since p is the probability of 

success and q is the probability of failure, p + q = 1. With n events, there are n + 1 different possible 
outcomes since it is possible for the event to occur 0 out of n times.

L  The Binomial Distribution is a probability distribution.

L  Expected Value for a Binomial Distribution: The expected value of a binomial distribution with 
n events and probability of success p for each event is E  = n · p.

L  Variance and Standard Deviation of a Binomial Distribution: The variance of a binomial distri-
bution is o 2 = n · p · q. The standard deviation of a binomial distribution is o  =             .

L  Approximation of the Normal Distribution: We can use the Binomial Distribution with p = 0.5 
and increasing values of n to approximate the Normal Distribution.

L  Probabilities for the Normal Distribution: Under a Normal Distribution, approximately 68% of 
data values fall within one standard deviation of the mean, approximately 95% of data values fall 
within two standard deviations of the mean, and approximately 99.7% of data values fall within 
three standard deviations of the mean.

L  Probabilities for the Normal Distribution in Terms of Z-Scores: For a data set that is normally 
distributed, approximately 68% of the data values will have z-scores between –1 and 1 (inclusive), 

m
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L  Variance of a Probability Distribution: The variance of a probability distribution is the sum of 
the squares of the differences between each outcome and the expected value multiplied by the 

probability of each outcome: o 2 =     (Ei − E)2 · p(Ei) . The alternative formula for the variance of a 

probability distribution is o 2 =    [Ei
2 · p(Ei )] − E2.

L  Standard Deviation of a Probability Distribution: The standard deviation of a probability dis-

tribution is the square root of the variance of the probability distribution: o   =                           

or                                 .

L  Criteria and Formula for the Binomial Distribution: A situation can be modeled using the Bino-
mial Distribution if the following criteria hold: each outcome is made up of a series of independent 
events, these events can be classified as success or failure, and the probability of success is constant 
across events. Given a probability of success p and a probability of failure q for each event, the prob-

ability of k successes out of n events is given by the formula        · pk · qn−k. Since p is the probability of 

success and q is the probability of failure, p + q = 1. With n events, there are n + 1 different possible 
outcomes since it is possible for the event to occur 0 out of n times.

L  The Binomial Distribution is a probability distribution.

L  Expected Value for a Binomial Distribution: The expected value of a binomial distribution with 
n events and probability of success p for each event is E  = n · p.

L  Variance and Standard Deviation of a Binomial Distribution: The variance of a binomial distri-
bution is o 2 = n · p · q. The standard deviation of a binomial distribution is o  =             .

L  Approximation of the Normal Distribution: We can use the Binomial Distribution with p = 0.5 
and increasing values of n to approximate the Normal Distribution.

L  Probabilities for the Normal Distribution: Under a Normal Distribution, approximately 68% of 
data values fall within one standard deviation of the mean, approximately 95% of data values fall 
within two standard deviations of the mean, and approximately 99.7% of data values fall within 
three standard deviations of the mean.

L  Probabilities for the Normal Distribution in Terms of Z-Scores: For a data set that is normally 
distributed, approximately 68% of the data values will have z-scores between –1 and 1 (inclusive), 
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approximately 95% of the data values will have z-scores between –2 and 2 (inclusive), and approxi-
mately 99.7% of the data values will have z-scores between –3 and 3 (inclusive).

1. Consider the following set of data: 7, 8, 13, 9, 10, 11, 5, 4, 3, 4, 5, 6, 5, 5, 3, 4.

a. Find the mean, median, and mode of these data.

b. Find the range and interquartile range for these data.

c. Find the variance and standard deviation for these data.

d. What is the z-score for the data value 4 in the above data?

e. Are any of these data outliers? Explain.

2.  Some parents are wondering if there is a difference in the amount of homework students are assigned
at two local high schools: Rydell High School and Shermer High School. To try to test this, twenty
students are selected at random from each high school and asked to record how many hours they
spend doing homework during the next week. The results are shown below:

a. Find the mean, median, and mode of the Rydell High data.

b. Find the mean, median, and mode of the Shermer High data.

c. Find the range and interquartile range of the Rydell High data.

d. Find the range and interquartile range of the Shermer High data.

e. Find the variance and standard deviation of the Rydell High data.

Rydell HigH ScHool 13 15 7 9 5 16 6 5 11 14 15 8 8 6 10 12 9 8 13 5
SHeRmeR HigH ScHool 12 11 3 7 6 10 2 5 12 4 8 6 5 9 5 8 4 8 7 11
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f. Find the variance and standard deviation of the Shermer High data.

g. Which school do you believe assigns more homework? Explain and justify your answer.

3.  Consider the following breakdown of 1st place, 2nd place, and 3rd place from a recent track season for
Rydell High School, Ridgemont High School, Bayside High School, and Shermer High School. A
total of 100 events were run during the season.

a.  If a top-three finisher is selected at random, what is the probability he/she is from Rydell High-
School?

b.  If a top-three finisher is selected at random, what is the probability he/she is from Bayside and
finished 3rd?

c.  Given that a 1st place finisher is selected, what is the probability he/she is from Ridgemont High
School?

d.  Given that a top-three finisher from Ridgemont High School is selected, what is the probability
he/she finished 1st?

e.  If a top-three finisher is selected, what is the probability he/she finished 3rd?

f. If a top-three finisher is selected, what is the probability he/she is from Shermer High School?

g.  If a top-three finisher is selected, what is the probability he/she is from Shermer High School
and finished 3rd?

h.  Is being a 3rd place finisher and being from Shermer High School independent of each other?
Explain.

4. Consider the following probability distribution.

1st 2nd 3rd

RyDELL 36 19 28
RIDGEMONT 24 27 37
BAySIDE 26 18 22
ShERMER 14 36 13

OUTCOME 5 6 7 8 9
PROBABILITy 0.2 0.25 0.1 0.07
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a. What value is needed to complete the probability distribution? Explain.

b. What is the expected value of this probability distribution?

c. What are the variance and standard deviation of this probability distribution?

5. A fair twenty-sided die numbered 1–20 is rolled. What is the probability of getting:

a. An odd number?

b. A number divisible by 3?

c. A number divisible by 5?

d. A number divisible by 3 or 5?

e. A prime number (1 is not prime)?

f. A number divisible by 2 and 3?

6. A set of seven (7) 20-sided dice are rolled. What is the probability of getting:

a. Exactly three (3) results of 19?

b. At least two (2) results of 11?

c. At most four (4) results of 17?

7. A set of seven (7) 20-sided dice are rolled.

a. What is the expected value for the number of 9’s that are rolled?

b. What are the standard deviation and the variance for the number of 9’s that are rolled?

8.  Consider a standard deck of playing cards (52 cards, no jokers). If two cards are drawn without re-
placement, what is the probability that the two cards drawn are:

a. Both spades?

b. Both kings?

c. Two mismatched cards (do not share suit or face value)?

d. Both queens?
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e. A pair (same face value)?

f. Two matching cards (have either the same suit or the same face value)?

9.  If five cards are drawn from a standard deck without replacement, what is the probability of draw-
ing:

a. Exactly three kings?

b. Any three of a kind (three cards with the same value, two cards with different values)?

c. A full house (a three of a kind and a pair?)

10.  Francine likes to watch for shooting stars in the night sky. In any given hour, the probability that
Francine sees a shooting star is 45%. Francine watches the night sky for shooting stars for two con-
secutive hours.

a. What is the probability she sees exactly two shooting stars?

b. What is the probability she sees exactly one shooting star?

c. What is the probability she sees no shooting stars?

d.  What is the probability she sees a shooting star in the second hour, given that she saw one in
the first hour?

e. Construct a probability distribution to model this situation.

f.  Find the mean, variance, and standard deviation for the number of shooting stars Francine will
see.

11.  The probability that a bat will fly into a house is 0.02. The probability that a bat will have rabies and
fly into a house is 0.0096.

a.  Assuming the events of a bat flying into a house and a bat having rabies are independent, what
is the probability of a bat having rabies?

b. Do you believe that a bat flying into a house is independent of a bat having rabies?

c.  Tests on bats captured in the wild suggest that the probability of a randomly selected bat having
rabies is 0.05. What does this imply about the assumed independence of a bat flying into a house
and a bat having rabies?
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d. What is the probability that a bat has rabies, given that it has flown into a house?

12.  On average, a family of four in the United States spends $150 per week on food with a standard devia-
tion of $7.50. Assume these data are normally distributed.

a. What is the z-score of a family that spends $140 per week on food?

b. What is the z-score of a family that spends $185 per week on food?

c. The middle 68% of families spends between what amounts on food?

d. The middle 95% of families spends between what amounts on food?

e. What is the probability of selecting a family that spends less than $135 per week on food?

f.  What is the probability of selecting two families that both spend less than $135 per week on
food?

g.  What is the probability of selecting three families that all spend less than $135 per week on
food?

h.  If three families were selected that all spent less than $135 per week on food, would you think
this was a random selection? Explain.

i.  If three families were randomly selected, and they all spent less than $135 on food, what would
you think about this situation? Explain.

13.  An economist wants to study the average income of families in a local metropolitan area. She ran-
domly selected 55 anonymous tax returns from the IRS, and the results are shown below.

$35,861 42,403 47,601 13,519 54,190
13,730 59,732 10,014 50,757 107,869
93,181 33,291 18,821 92,107 32,269
58,079 48,145 75,601 48,351 58,641
28,992 76,972 34,811 65,919 9,710
48,633 33,711 79,708 42,381 56,951
44,179 80,531 40,079 77,460 10,028
28,456 22,105 80,197 23,986 54,507
91,097 57,706 33,468 38,131 77,349
56,660 36,511 40,788 59,832 28,466
24,472 46,325 110,578 43,548 81,648
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a.  Find the mean, median, and mode of these data. What does a typical family in this metropoli-
tan area earn as an annual income?

b. Find the range and interquartile range for these data.

c. Find the variance and standard deviation for these data.

d. Are there any outliers in these data? Explain.

e. What approximate incomes would be in the middle 68% of the data given?

f. What is the z-score for the income of $47,601? What does this mean?

g.  Assume that income is normally distributed in this area, with mean and standard deviation
equal to the values determined above. Under this assumption, what incomes represent the mid-
dle 68% of annual income in this metropolitan area?

h. What do your answers to parts “e” and “g” imply when compared to each other? Explain.

14.  In order to try to increase attendance, a local casino has developed a new card game to lure gamblers,
called The Joke’s on You! The game is advertised as being very straightforward; to play, gamblers just
draw a single card out of a deck of 54 cards (standard deck including two jokers). The payout scheme
is as follows:

 None of these categories are allowed to overlap. Each card fits into only one category, and it is always 
the category that is best for the gambler.

 The cost to play the game is $2. If the gambler draws a joker, he/she must pay the dealer $20 more 
(from his/her pocket).

a.  Calculate the probabilities of each of the six outcomes listed above on a single play of The Joke’s
on You!

IF A GAMBLER DRAWS ThE PAyOUT IS
the ace of spades $25
an ace (not of spades) $10
the king of hearts $9
a king or a heart (but not K of ♥) $8
anything else $0
a joker –$20
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b.  Construct a probability distribution using these probabilities and the outcome for the player.
(Don’t forget it costs $2 to play.)

c.  Verify that your probability distribution is a probability distribution. Explain how you know it
is a probability distribution.

d. Calculate the expected value, variance, and standard deviation for this probability distribution.

e.  Would you recommend that gamblers play this game? Why or why not?
Would you recommend that the casino offer this game? Why or why not?

f. Explain why this situation cannot be modeled using the binomial theorem/distribution.

15. Prove that the variance for the Binomial Distribution is o 2 = n · p · q.
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Conclusion

This year, the Mathematics Resource Guide focused on permutations and combinations, algebra, and statis-
tics. Our goal with respect to these topics was twofold: to highlight important areas of mathematics that are 
often deemphasized or omitted altogether from a traditional high school mathematics sequence and to inves-
tigate important and interesting connections between these apparently disparate areas of mathematics.

In Section I, we looked at the mathematical ideas of counting arrangements and groups. Permutations and 
combinations are very flexible and important mathematical ideas and crop up in all sorts of unexpected plac-
es. Combinations are particularly useful, as we saw them appear several times in our discussion of algebra 
and statistics later in the resource guide.

In Section II , which focused on the topic of algebra, we discussed portions of algebra not normally ad-
dressed in high school mathematics. The general impression of algebra that most people have from study-
ing it in high school is a potentially distorted, limited picture of what mathematicians consider when they 
think about algebra, and our goal here was to give you a broader sense of what algebra is. Arithmetic and 
geometric sequences and series, sigma notation, and polynomials are all important algebraic structures that 
deserve our careful attention. We studied the Binomial Expansion Theorem, an incredibly important and 
foundational result that is often left out of high school mathematics or studied without giving students a true 
sense of its power and importance. We looked at several applications of the Binomial Expansion Theorem, 
most importantly in statistics with the Binomial Distribution. With our study of Euler’s constant, we saw an 
interesting example of mathematics generating more mathematics, which is truly what undergraduate and 
graduate level mathematics are based upon.

In the third and final section, covering statistics, we studied measures with which you were probably already 
familiar, such as mean, median, mode, range, variance, and standard deviation, but we tried to illuminate 
the reasons for these measures and show that the formulas for these measures were developed in a manner 
that makes sense. We also studied the foundational topic of probability distributions and looked at two 
important distributions: the Binomial Distribution and the Normal Distribution. Through proving import-
ant results about the Binomial Distribution, you have hopefully gained an appreciation for the mathematical 
foundations of statistics as well as the utility of sigma notation and the Binomial Expansion Theorem.

Our goal was to make this year’s Mathematics Resource Guide challenging, enlightening, and interesting. 
Although sometimes misrepresented as a sequence of unconnected topics, mathematics at its core is about 
seeking and finding interesting connections between ideas, and we hope you are left wondering about other 
connections within and between mathematics that you may have previously overlooked.
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